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Introduction

Science in general and particle physics in particular thrive from con-
ceptual puzzles and unexplained phenomena. The gauge hierarchy prob-
lem is an exemplar source for inspiration. While we haven’t got yet any
direct experimental evidence onto what mechanism sets the small ratio
GN/GF ∼ 10−34 between the Newton and Fermi constants, a great deal
of theoretical progress in particle physics has been triggered in trying to
come up with an explanation. For instance, the great development in
supersymmetric field theory of the last three decades is to a good extent
motivated by the potential relevance of supersymmetry to the hierarchy
problem. The last few years have also witnessed a great revival in the
interest for models with extra space dimensions. On one side this revival
is motivated by important theoretical developments within superstring
theory, in particular by the realization that there exist in string the-
ory solitonic membranes, D-branes, on which ordinary particles could
be localized [1]. On the other side the revival is also phenomenologically
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motivated by the realization that extra dimensions can shed a new light
on the hierarchy problem [2].

The potential relevance of extra dimensions to the hierarchy prob-
lem can be grasped by the following simple line of reasoning. One
way to phrase the hierarchy is that the Standard Model (SM) quanta,
like the Z-boson, are much softer than the quanta of a possible un-
derlying Grand Unified Theory (GUT) or string theory: mZ/mGUT ∼
10−14. That is to say that the minimum frequency corresponding to
a travelling Z boson wave is mZ ∼ 102 GeV while the minimal fre-
quency of a GUT wave is ∼ 1016 GeV. Supersymmetry or technicolor
allow for a dynamical explanation of this huge hierarchy. Moreover in
both cases the value of mZ/mGUT is determined by a quantum phe-
nomenon, i.e. dimensional transmutation. However we know since long
of a basic classical phenomenon that can make quanta softer: gravi-
tational Redshift. Let us briefly recall how this works in general rel-
ativity. Consider a gravitational field specified by a metric gµν(x).
The invariant interval separating event x from event x + dx is given
by (ds)2 = gµνdx

µdxν . By the Equivalence Principle (ds)2 equals the
Lorentz invariant interval measured by any freely falling observer at x:
(ds)2 = −(∆X0)

2 + (∆X1)
2 + (∆X2)

2 + (∆X3)
2. Consider the case

of a static metric gµν and of an interval dx in the time direction. In
this case (ds)2 = g00(dx

0)2 < 0 corresponds to the proper time interval
experienced by a freely falling observer with zero velocity at x

dτ =
√

−g00(x)dx0 (0.1)

By the Equivalence Principle any clock at rest at x will oscillate with its
proper period ∆T = 1/ω according to the same freely falling observer.
Then by eq. (0.1) the frequency ω(x) oberved in the original reference
frame will be rescaled according to

1

ω
=
√

−g00(x)
1

ω(x)
. (0.2)

This rescaling is not yet, by itself, a physical effect: also the unit of
measure of time at x, specified by some standard clock, will undergo
the same rescaling. (Another way to state this is that the overall nor-
malization of the metric, upon which eq. (0.2) crucially depends, is not
an observable as it depends on the units of measure.) An observable
effect arises when comparing the frequencies of two copies of the same
clock located at different points. For instance we can consider two hy-
drogen atoms located respectively at points A and B in the gravitational
field of a star (see Fig. (1)), and associate the frequency ω to a given
atomic transition. The waves emitted at A will oscillate everywhere
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Figure 1. Two atoms A and B in the gravitational field of a star.

with frequency ωA =
√

−g00(A)ω. This is because the background is
time independent, and two neighbouring wavecrests, leaving A with de-
lay 1/ωA, will take the same time to reach any given point, for example
point B. Similarly the wave emitted at B will oscillate everywhere with
frequency ωB =

√

−g00(B)ω. The ratio

ωB

ωA
=

√

g00(B)

g00(A)
< 1 (0.3)

represents a physical effect. The observer A notices that the light emit-
ted from position B, closer to the star, is redshifted and similarly ob-
server B notices that the light emitted at A is blue-shifted. This effect
can be qualitatively understood as the photon loosing kinetic energy
as it climbs up to A from deep inside the gravitational potential well
at B. In everyday’s life this gravitational redshift represents a tiny ef-
fect, since the gravitational field of the earth is rather weak. However
gravity is a non-linear theory encompassing large gravitational fields,
like the one near the horizon of a black hole. Assume indeed that the
star of the previous example has collapsed to form a black hole. In
this case the metric is given as a function of the radial coordinate r by
g00 = −1+2GNM/r ≡ −1+rS/r (with M the black hole mass). As the
position rB of atom B approaches the horizon rS we have g00(rB) → 0 so
that the the Redshift becomes infinite! The infinite Redshift of photons
emitted at the horizon corresponds to the fact that light cannot escape
from a black-hole. We can say that the gravitational field of a black
hole creates an infinite hierarchy of energies of the emitted photons as
the emitter is moved towards the horizon. With the gauge hierarchy in
mind it is perhaps then natural to think of a wild generalization of the
system we just discussed, one in which the points A or B are general-
ized to 3-dimensional spacelike surfaces, or 3-branes. In this process the
dynamical system living on a point, the atom, is generalized to the dy-
namical system that lives on a 3-surface, a 3+1 quantum field theory, for
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instance the Standard Model. Imagine then to place two identical copies
of 3-branes hosting the Standard Model at different points inside a grav-
itational field, in Fig. (2), in a straightforward generalization of Fig. (1).
Of course, since three space dimensions already span the membranes, the
distance separating them must correspond to a new spacelike dimension,
the fifth dimension. In our generalization the role of the atomic energy
levels (and thus of the emitted frequencies) is played by the masses of
the particles living on the branes. For instance the masses of the two
identical Z bosons satisfy

mZ(B)

mZ(A)
=

√

g00(B)

g00(A)
< 1. (0.4)

If only gravity propagates in the fifth dimension, one experimental con-
sequence of eq. (0.4) is that the gravitons emitted in radiative Z decays
at point A are more energetic to observer B than those emitted in the
same process at B. Also one can’t stop from imagining a situation where
brane B is much deeper than brane A inside a gravitational field, perhaps
even very close to a horizon: then one would expect a huge hierarchy for
the masses of identical particles living on the two different branes. Of
course the example we are considering is not directly applicable to the
gauge hierachy problem, as that does not concern two identical copies
of the SM. Nevertheless the Redshifting mechanism would obviously be
at work even if the field theories living on the two branes where not the
same, and also in more complicated situations where the SM degrees of
freedom are not fully localized: it is just kinematics. Is it then possible
that the weak scale hierarchy originates as a consequence of gravitational
Redshift in extra-dimensions? The answer to this question is affirmative
and the model that proves it was proposed by Randall and Sundrum in
a pioneering paper [3].

1. Part I: Extra Dimensions

In this section we introduce the players in the game (gravity, branes
and localized fields) and discuss the rules that govern their effective
action.

1.1 Gravity and Branes

Gravity plays a central role in the physics of extra dimensions. This is
shown for instance by the example of the previous section. It is then im-
portant to recall the basic concepts relavant to describing the dynamics
of gravity. A basic introduction to General Relativity is taken for granted
here. We will be concerned with a D-dimensional space-time with co-
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Figure 2. Two branes A and B in a 5-dimensional gravitational field.

ordinates XM and metric gMN (X), with M,N = 0, . . . ,D − 1. We use
the mostly plus convention wherein at any space time point a locally
inertial frame can be found in which gMN = ηMN ≡ (−1,+1, . . . ,+1).
Later on we will specialize to the phenomenologically relevant case where
D − 4 space-like dimensions are compactified. The metric, up to diffeo-
morphisms, contains the dynamical degrees of freedom of gravity. The
affine connection ΓR

MN = gRS(∂MgNS +∂NgMS −∂SgMN )/2 defines par-
allel transport, by means of which the Riemann tensor, characterizing
the spacetime curvature, is constructed RS

MNR = ∂NΓS
MR − ∂MΓS

NR +
ΓT

MRΓS
TN − ΓT

NRΓS
TM . Using the Riemann tensor and its contracted

forms, the Ricci tensor RMR = RN
MNR and Ricci scalar R = RMNg

MN ,
the most general invariant action can be written as

S =

∫

dDX
√
g
{

aMD
D + 2MD−2

D R + bMD−4
D R2 + . . . cMD−6

D R R + . . .
}

(1.1)
where MD is D-dimensional Planck scale. In ordinary 4-dimensional
Einstein gravity, according to our non-conventional normalization, we
have M4 = (32πGN )−1/2 ≃ 1.2 × 1018 GeV. We have parametrized all
the couplings with dimensionless coefficients a, b, c, . . . and organized the
lagrangian as a derivative expansion

aMD
D p

0 +MD−2
D p2 + bMD−4

D p4 + . . .+ cMD−6
D p6 + . . . (1.2)

where the lowest terms are those that are important at the longest dis-
tance scales. In particular the first term, the cosmological constant,
influences directly the global structure of the space-time. From the ef-
fective lagrangian point of view, which we will discuss in more detail
later, we can meaningfully address only those phenomena that involve
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a finite number of terms, i.e. those for which p/MD is significatively
less than 1. In this respect, although one would naively expect all the
coefficients a, b, c, . . . to be O(1), we will assume that the cosmological
term a is much smaller than 1. This is mostly for a theoretical rea-
son: when a = O(1) the background solution to Einstein equations has
R = O(M2

D) for which the derivative expansion breaks down. But no-
tice also that there is a phenomenological preference to work with small
cosmological constant. On one side we know from observation that the
effective cosmological constant of our macroscopic 4-dimensional world
is very small: Λ4 = a4M

4
4 ∼ (10−3eV)4 ≪ M4

4 . This may be an indi-
cation that also the fundamental cosmological constant aMD−2

D , before
compactification, is small. Moreover, as mentioned in sec. 1.1.6, a small
D-dimensional cosmological constant is also favored in the scenario of
large extra dimensions [2] by the requirement of a flat potential for the
radius modulus. So, while we will assume a ≪ 1 as a result of some
tuning or, perhaps, D-dimensional supersymmetry, for all the other co-
efficients we will just need the perfectly natural and weak assumption
that they be ≤ O(1). For instance in ordinary General Relativity with
the above assumption the Einstein Lagrangian is a successful truncation
up to the very small Planck length λP = 1/M4 = 10−33 cm. This is
evident with the above classical Lagrangian, but as discussed later, it
remains true also at the quantum level.

The second important player in the extra dimensional game is given
by the so called (mem)branes. They are extended objects which span
surfaces and on which excitations (particles) can be localized. An ex-
plicit physical example of a brane is given, for instance, by the surface
separating two different metals, where there exist localized excitations
in the charge density, the surface plasmons. Another explicit example
of a brane can be provided by a domain wall. Consider a scalar field
theory with a Z2 invariant potential V (φ) = g

2 (φ2 − v2)2. In addition
to the two vacuum solutions φ = ±v this model contains domain wall
solutions

φ = v tanh(m(z − z0)) (1.3)

where m =
√
gv is the mass of the scalar field, while z indicates one

of the space directions. This solution interpolates between the φ = −v
vacuum at z = −∞ and the φ = +v vacumm at z = +∞ and is thus
topologically stable [4]. With respect to the true vacuum φ = ±v this
solution has an energy density E = (∂zφ)2 ∝ cosh−4(m(z− z0) localized
within a distance ∼ 1/m from the center of the wall. Integrating E
across the wall we obtain the wall tension τ = 4

√
gv3/3. Away from

the wall the scalar has mass m so that at E < m there are no modes
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propagating through the full space. There is however a massless scalar
mode localized at the wall. Indeed the domain wall solution breaks
spontaneously the original D-dimensional Poincaré group down to the
(D − 1)-dimensional one, corresponding to translations and boosts in
the directions parallel to the wall. As it happens for ordinary internal
symmetries, we then expect the presence of Goldstone bosons associated
to the broken generators. A naive application of that result to space-
time symmetries is however not possible[7, 8]. The Goldstone theorem is
proven by considering the local tranformations associated to the global
symmetries. In the case of the Poincaré group both translations and
boosts reduce, locally, to local translations. The Goldstone bosons are
then in a one to one correspondence with the broken translation gener-
ators [7]. In the case at hand the translations along the z direction are
broken and z0 parametrizes the manifold of equivalent vacua. Like in the
case of internal symmetries we can parametrize the Goldstone excitation
by promoting z0 to a field z0(x) depending on the (D − 1) longitudinal
coordinates. At linearized level it corresponds to a mode

δφ(x, z) = − vm

cosh2mz
z0(x) (1.4)

which is clearly normalizable and localized within a distance 1/m around
the wall. Under z-translations φ(z, x) → φ(z + a, x) we have z0(x) →
z0(x)−a. Because of this non linear symmetry the action can depend on
z0 only through its space time derivatives. In particular there is no mass
term for z0(x). The effective action for z0, valid at momentum ≪ m,
can be carefully derived by integrating out the massive excitations of the
original field φ. However it is intuitively clear what result to expect at
lowest order. In this limit we are considering very smooth deformations
of the wall, such that its position varies appreciably only over distances
much bigger that its width 1/m. At each point we then expect the
field to be given approximately by eq. (1.3), but with z replaced by the
direction locally orthogonal to the wall. Then the action will just be
given by the integral of the original wall tension τ =

√
λv3 over the

volume of the deformed wall.
Other fields can be localized at a domain wall. A fermion ψ with

Yukawa interaction λψψ̄ wil be massive in the bulk, but will contain
zero modes localized at the wall where φ = 0 [5]. Similarly, ideas to
localized gauge fields have been proposed [6]. Likewise, D-branes in
string theory support localized modes (scalars, fermions and vectors)
associated to open strings ending on them [1]. In these lectures we will
be focusing on the low energy description of branes. For instance, in the
case we just considered this corresponds to E ≪ m. In this regime we
will not be concerned with the microscopic mechanism that gave origin
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to the brane and to the fields localized on it. We will just assume that
the brane hosts a field theory of our choice and derive the consequences.
The presence of some degrees of freedom, like the Goldstone z0 above,
could however just follow from symmetry considerations and not be an
option.

1.2 Brane Effective Actions

We will now discuss the dynamics of branes by writing the most gen-
eral effective action satisfying some basic principles. We follow closely
the presentation given in ref. [7]. Let us consider an n-brane, a membrane
filling n spacial dimension whose spacetime trajectory, the worldbrane,
is an n + 1-surface. We parametrize this surface with coordinates xµ,
µ = 0, . . . , n. The embedding in the full D-dimensional spacetime is
described by D functions X(x)M , with M = 0, . . . ,D− 1. For instance,
in the simplest case of a point particle, a 0-brane, the worldbrane is the
particle trajectory, the worldline, parametrized by a time coordinate x0:
X(x0). It is physically intuitive that the distance between points on the
brane, as measured by a brane observer, be the same as measured by a
bulk observer,

ds2|brane = GMN (X(x)) dX|branedX
N |brane

= GMN (X(x)) ∂µX∂νX
Ndxµdxν (1.5)

i.e. the bulk metric gives rise to an induced metric ĝµν on the brane

ĝµν(x) = GMN (X(x)) ∂µX∂νX
N . (1.6)

Notice that the induced metric is a scalar under the bulk diffeomor-
phisms (all the M,N... indices are contracted) while it is a tensor un-
der reparametrizations of the brane xµ = xµ(x′). As the choice of co-
ordinates x is arbitrary, physical quantities should not depend on it.
Therefore, like in ordinary gravity, starting from ĝµν we should write an
action invariant under brane reparametrizations. We will do that in a
moment. Before then we want to emphasize that, like we have projected
the metric, so we can do with other tensors. For instance a bulk gauge
field (1-form) AM (X) leads to a brane field Âµ(x) = AM (X(x)) ∂µX

M

which under the bulk gauge tranformation AM → AM + ∂Mα shifts as
under a proper n+ 1-dimensional gauge transformation

δÂµ(x) = ∂Mα (X(x)) ∂µX
M (x) = ∂µ [α (X(x))] . (1.7)

We can then use the projected field and gauge symmetry to couple the
original 1-form to charged matter on the brane. A similar procedure
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can be followed for the D-bein field EA
M , necessary to couple fermions

to gravity in a manifestly covariant way. Here and in what follows we
indicate with A,B, . . ., A = 0, . . . D − 1, and with a, b . . ., a = 0, n re-
spectively the bulk and brane Lorentz indices. The D-bein EA

M field
represents D 1-forms (A = 0, . . . ,D − 1) in the cotangent space, sat-
isfying the relation ηABE

A
ME

B
N = GMN . The D-bein defines at each

space-time point a tangent space basis corresponding to the coordinates
of a free falling observer: it associates to the entries of a vector V M in
a given system of coordinates the entries V̂ A = EA

MV
M in the coordi-

nates of a free falling observer. Indeed, by the definition of EA
M , vector

products are conserved: V̂ AŴBηAB = VMWNGMN . Moreover local
Lorentz rotations EA

M (X) → RA
B(X)EB

M (X) are a gauge symmetry: the
orientation of the D-bein at each point is not physical. This just means
that the locally inertial reference frame is only defined up to a Lorentz
transformation. Now, the tangent space σ to the brane at a point x is
a n + 1 subspace of the tangent space Σ at X(x). A vector vµ ∈ σ is
written in free falling coordinates as v̂A = EA

M∂µX
Mvµ. By this rela-

tion, σ is represented as a n+ 1 dimensional subspace of the Lorentzian
(free falling) vector space. To define the induced n + 1-bein we have
just to find an orthonormal basis of this subspace. One way to proceed
is to divide the indices {A} into two groups: {a} for A = 0, . . . , n and
{i} for A = n + 1, . . . ,D − 1. Since σ is a time-like subspace we can
always perform a Lorentz rotation v̂′A = R̄A

B v̂
B such that v̂′i ≡ 0 for

v̂A ∈ σ. In the new basis, σ is spanned by v̂′a for a = 0, . . . , n, so that
we have v̂′av̂′bηab ≡ v̂′Av̂′BηAB = vµvνgµν . For vectors in σ, summing
over a is equivalent to summing over A. The induced n+1-bein can then
be defined as eaµ ≡ R̄a

BE
B
M∂µX

M . It is straightforward to check that eaµ
satisfies the basic conditions

eaµe
b
νηab = ĝµν eaµe

b
ν ĝ

µν = ηab. (1.8)

One crucial remark is that the rotation R̄A
B is only defined modulo the

rotations in the subgroup SO(1, n) × SO(D − n − 1) which leave the
σ subspace and its complement invariant. In particular the induced eaµ
is defined modulo the local Lorentz symmetry SO(1, n) of the brane:
the arbitrariness of our construction of eaµ does not affect physics pro-
vided the brane Lagrangian is written in a locally Lorentz invariant way.
Using eaµ we can derive a brane spin connection and write a covariant
Lagrangian for localized fermions.

The effective Lagrangian for a brane can then be written as

Sbrane =

∫

dn+1x
√
g
{

−τ +Mn−1R(ĝ) + ψ̄ 6Dψ +Dµφ
†Dµφ+
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+(higher derivatives)
}

(1.9)

where we have considered the example of localized fermion and scalar
fields. The covariant derivatives involve the projected 1-forms, Âµ and
eaµ, as well as any possible localized Yang Mills field. The most relevant
term, the one with the lowest number of derivatives, corresponds to the
brane tension τ . In the effective theory description of the domain wall of
the previous section, τ is determined by matching eq. (1.9) computed on
a flat configuration, on which the intrinsic curvature terms vanish, with
our calculation of the flat wall tension. This way we obtain τ = 4

√
gv3/3.

The general result in eq. (1.9) also shows that the naive derivation of
the effective action sketched in sect. 1.1.1 is indeed accurate in the limit
where the wall intrinsic curvature is small.

Let us consider as an explict example a 3-brane living in D dimen-
sional Minkowsky space, in the limit in which gravity is turned off. We
can choose a gauge where the brane embedding is simply Xµ = xµ for
µ = 0, 1, 2, 3 and Xi = Y i(x) for i = 4, . . . ,D − 1. In this parametriza-
tion the brane roughly extends along the 0, . . . , 3 direction of the bulk
space. The functions Y i parametrize the deformations along the orthog-
onal directions and are the dynamical degrees of freedom, the branons.
In terms of the branons the induced metric is

ĝµν = ηµν + ∂µY
i∂νY

jδij . (1.10)

and the tension term of eq. (1.9) expanded in powers of ∂Y becomes

Leff = −τ
√
−g = −τ

{

1 +
1

2
∂µY

i∂µYi +
1

8
(∂µY

i∂µYi)
2 + . . .

}

.

(1.11)
This lagrangian provides a kinetic term with the right sign for Y pro-
vided τ > 0. The configuration Y i = 0 is stable and represents the
vacuum configuration of our brane. But the most remarkable thing is
that our general symmetry considerations also fix all the interaction
terms involving n fields Y and a number of derivatives ≤ n. The terms
involving the curvature affect the interactions that have always at least
two more derivative, and give subleading contributions to the scattering
of branons at low enough energy. This is totally analogous to what hap-
pens in ordinary sigma models, like the pion lagrangian of QCD, where
at lowest order in the expansion E/fπ the scattering amplitudes are fully
fixed by the group structure in terms of just one physical parameter, fπ

itself. Indeed also the branon system is a σ-model whose coset space cor-
responds to the breakdown of the D-dimensional Poincaré group down
to the 4-dimensional one [7, 8]. To conclude, notice that by indicating
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τ = f4 and by going to the canonical field Ŷ i = f2Y i, the branon inter-
actions are proportional to inverse powers of f : this mass scale plays a
role analogous to fπ in the pion Lagrangian.

1.3 Effective Field Theories

One general aspect of physical systems is that the dynamics at large
length scales, or equivalently at low energy, does not depend too much on
the microscopic details. For instance the interaction of an electromag-
netic wave with an antenna of size a much smaller than the wavelength
λ is described to a good accuracy by the coupling to the dipole mode
of the antenna. Higher multipole moments will contribute to correc-
tions suppressed by powers of λa ≪ 1. Another example is provided
by molecules, where the slow vibrational modes, describing the oscil-
lations in the distance between the various nuclei, can be accurately
studied by first averaging over the fast motions of electrons. Averaging
over the electronic states provides an effective Hamiltonian for the low
frequency modes, where the higher details of the electronic structure
are controlled by higher powers of the ratio ωslow/ωfast. Effective Field
Theories technique provide a systematic way, an expansion, to treat the
details of microscopic physics when discussing phenomena at low enough
energy. Normally, when Quantum Field Theory is introduced as a con-
struction to describe fundamental processes, a great emphasis is put
on the requirement of renormalizability. Technically renormalizability
corresponds to the possibility of sending the energy cut-off Λ of the sys-
tem to infinity while keeping all the physical quantities finite (and non
trivial)∗. Physically this means that the theory can be extrapolated to
infinitely small distances without encountering new microscopic struc-
tures. Renormalizable theories can be truly fundamental and not just
an effective description valid in a limited energy range. Renormalizable
theories are however a special case, and in practically all applications to
particle physics one deals with non-renormalizable effective field theories
† The best example of a non-renormalizable theory is given by General
Relativity, which necessarily requires a new description at an energy
scale smaller or equal to MP = 1019 GeV. Nonetheless GR makes per-
fect sense as an effective field theory at energies much smaller than its
cut off [10]. But also QED is an effective field theory: the interactions of
electrons and photons are modified at energies much bigger than me by

∗As we will explain better below this is a somewhat stronger requirement than renormaliz-
ability: in weakly coupled theories it corresponds to asymptotic freedom.
†For excellent introductions to effective field theories see the papers in Ref.[9]
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the presence of new particles and new interactions. Still in the regime
E ∼ me the small effects of the microscopic dynamics can be accounted
for by adding a suitable tower of non-renormalizable interactions. The
SM, the most fundamental description of particle interactions gravity
excluded, is renormalizable. Still we can only consider the SM as an
effective theory. On one hand this is because the necessary inclusion of
gravity makes it non-renormalizable. On the other hand, even in the ab-
sence gravity, the SM is renormalizable but not asymptotically free. At
least one of its couplings, the one associated to the hypercharge vector
boson, grows logarithmically with energy and becomes infinite at a scale
ML ∼ mW eb/α, with b = 12π cos2 θW/41 ∼ 1. At E ∼ML the perturba-
tive description breaks down, very much like the effective description of
G.R. breaks down at the Planck scale. The fact that ML ≫ MP makes
however this second problem academic.

In order to make these general statements more concrete, let us focus
on a very simple example. Let us consider a physical system which at low
enough energy possesses just one scalar degree of freedom parametrized
by a field φ. The most general local and Poincaré invariant Lagrangian
can be written as an expansion in powers of φ and of its derivatives

L = ∂µφ∂
µφ−m2φ2 + λ4φ

4 +
λ6

M2
φ6 +

λ8

M4
φ8 + · · ·

+
η4

M2
φ2∂µφ∂

µφ+
η6

M4
φ4∂µφ∂

µφ · · · (1.12)

where for simplicity we have also assumed a symmetry φ→ −φ. We have
scaled all the couplings by powers of one mass scale M and by dimen-
sionless quantities λi, ηi, . . .. It is reasonable to assume that λi, ηi, . . . ∼
O(1). This corresponds to a theory that in addition to the particle mass
m contains only another physical scale, M , associated to the interac-
tions. It is easy to understand the meaning of this expansion when
calculating scattering amplitudes at energies m ≪ E ≪ M . Let us
focus on tree level computations first. We shall worry about quantum
corrections later. Neglecting numerical factors and indicating one power
of momentum generically by E, we have

A2→2(E) ∼ λ4 + η4
E2

M2
. . . (1.13)

for the elastic process 2 → 2 corresponding to Fig. (3) and

A2→4(E) ∼ 1

E2

{

λ2
4 + λ4η4

E2

M2
+ λ6

E2

M2
+ . . .

}

(1.14)

for the inelastic process 2 → 4 shown in Fig. (4). This power counting
corresponds to simple dimensional analysis. Notice that for E ≪ M
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Figure 3. The diagrams contributing to the elastic process 2 → 2 at lowest order.

the dimensionless coupling λ4 dominates all the amplitudes. This result
is intuitively obvious. A coupling g of mass dimension [E]d can per-
turbatively contribute to observables via the dimensionless combination
g/Ed. We can then distinguish tree classes of couplings depending on
whether d is positive, zero or negative. Couplings of positive dimension
are called relevant, as their effect becomes more important the smaller
the energy. An example is given by the mass term itself, which gives
small O(m2/E2) effects in the relativistic regime, but becomes impor-
tant when E ∼ O(m). Couplings of vanishing dimensions, like λ4, are
termed marginal. At tree level their effects are independent of the energy
scale. Finally, couplings of negative dimension are termed irrelevant, as
their effects become very small in the low energy domain. Notice that
while there is only a finite numer of relevant and marginal couplings, the
tower of irrelevant couplings is infinite. In spite of their infinity, and as
their naming suggests, irrelevant couplings do not totally eliminate the
predictive power of our Lagrangian as long as we use it at low energy,
E ≪ M . At each finite order (E/M)n, only a finite number of terms
in the Lagrangian contributes to the amplitudes. This preserves a weak
form of predictivity, which is often good enough, since we just need to
match our theoretical computations to the experimental precision, which
is always finite.

We can now worry about quantum corrections. These introduce some
technical difficulties, but the basic conclusion is unchanged. To be fully
general, let us write our Lagrangian as a sum over operators Oi of di-
mension di + 4

L =
∑

i

ci
Oi

Mdi
. (1.15)

Assume we want to calculate some observable at order (E/M)n. Work-
ing at tree level it is enough to truncate L to the operators with di ≤ n.
The analysis at tree level is made simple by the fact that the exter-
nal momenta (∼ E) completely fix the momenta of the internal lines
and vertices. This is no longer true at loop level, where the loop mo-
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Figure 4. The leading contributions to the inelastic process 2 → 4.

mentum can be arbitrarily high. Moreover some of the loop integrals
are UV divergent and must be cut-off at some scale Λ. An interaction
term cON/M

dN , can generate quantum corrections that involve positive
powers of the cut-off Λ

δA
A ∼ · · · + c

ΛPEdN−P

MdN
+ · · · (1.16)

Then an operator with dN > n, which at tree level only gives corrections
beyond the needed accuracy En, can, at loop level, generate effects that
scale with a power dN − P ≤ n. Moreover if Λ ∼ O(M) these quantum
effects are as important as the tree level contribution of operators of
lower dimension. This seems very embarrassing. Fortunately it can be
proven that these effects are exactly equivalent to a renormalizations of
the coefficients ci of the operators of lower dimensionality. Therefore
they do not contain any new information and can be eliminated by a
trivial change of renormalization scheme. Their equivalence to local op-
erators is qualitatively understandable: loops of high virtuality are small
in position space, corresponding to a region of size 1/Λ, and look point-
like with respect to the long wavelength 1/E of the external particles.
Another way to understand this result is to take a Wilsonian view point
where Λ is the running cut-off. After running down to a scale Λ such
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Figure 5. 2-loop contribution to elastic scattering from λ5φ
5/M vertices.

that E <∼ Λ ≪ M , the troublesome virtual effects becomes manifestly
small: the big effect has been replaced by a local renormalization of the
classical Lagrangian ‡. But there is no doubt that the most convenient
method to define effective field theories at the quantum level is by Di-
mensional Regularization (DR). Dimensionally regulated loop integrals
exhibit no powerlike divergences, only logarithmic divergences survive.
The issue we just worried about does not even arise! The naive power
counting we found at tree level carries over to the quantum theory up
to mild logarithimic corrections.

Consider, for instance, the 2-loop diagram involving two insertions of
the λ5φ

5/M interaction shown in Fig. (5) By using a hard momentum
cut off we have

δA2→2 = λ2
5

{

a
Λ2

M2
+ b

E2

M2
ln Λ/E

}

(1.17)

while DR in 4 + ǫ dimensions gives

δA2→2 = λ2
5

(

1

ǫ
+ b lnµ/E

)

E2

M2
. (1.18)

In DR, after renormalization, this diagram gives just a logarithimic
Renormalization Group (RG) evolution of the coefficient of a dimen-
sion 6 operator (φ2) (φ2). We emphasize that while the power diver-
gences are totally scheme dependent, being fully saturated in the UV,
the logarithmic divergence involves a physical IR singularity lnE and

‡To make this argument fully rigorous one should take into account that the Wilsonian
Lagrangian at scale Λ now also contains terms that scale like inverse powers of Λ. Terms
proportional to 1/(ΛRMS) are however fixed by the renormalized couplings associated to
operators with di ≤ S [11].
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must be the same in both regularizations. This lnE term is associated
by unitarity to the cut diagrams |A2→3|2.

A by-product of this discussion is that in DR with minimal subtraction
(or any other mass independent subraction scheme) the RG equation
for the couplings of an effective Lagrangian follows just by dimensional
analysis [12]. Using the notation of eq. (1.15) where a coupling ci/M

di

has dimension −di, the β function has the form

µ
dci
dµ

=
∑

dj+dk=di

aj,kcjck +
∑

dj+dk+dl=di

aj,k,lcjckcl + · · · (1.19)

where ai,j, ai,k,l, . . . are numerical coefficient following from the loop in-
tegrals. Notice that the parameter submanifold where all the irrelevant
couplings (−di < 0) vanish is stable under RG evolution. This inter-
esting submanifold corresponds to what we normally call renormalizable
theories. On the other hand, once we turn on an irrelevant coupling of
dimension −d < 0 it will generate by RG evolution an infinite subset
of the couplings of more negative dimension. Such theories are termed
non-renormalizable, as quantum effects force the presence of infinitely
many inputs, though we hope to have made it clear how to deal with
them. Notice also that our original assumption to scale all the irrele-
vant couplings by the same mass M is stable under RG flow. Of course
there can be more complicated situations and models where the higher
dimensional couplings involve hierarchically different scales.

We conclude this discussion by reiterating the basic theorem. La-
grangians involving all possible non-renormalizable terms can be made
sense of as effective ones. A weak form of predictivity can be preserved
by working in perturbation theory in an expansion in E/M , where M is
the lowest scale characterizing the non-renormalizable couplings. This
works as long as E ≪M . When E ∼M infinitely many parameters be-
come relevant and our effective Lagrangian completely looses predictive
power. A reasonable expectation is that at the scale M the theory enters
a new regime where perhaps new degrees of freedom are relevant. For in-
stance this is what happens in QCD at the scale 4πfπ ∼ 1GeV where the
weakly coupled description of mesonic physics breaks down. At this en-
ergy the hadrons deconfine and at higher energies the dynamics is more
accurately described in terms of quarks and gluons. Notice that, accord-
ing to our discussion, non-asymptotically free renormalizable theories
are qualitatively similar to non-renormalizable theories. In the former
case, at least one coupling grows logarithmically λ(E) ∝ 1/ ln(ML/E)
with energy, while in the latter the growth of the effective dimensionless
couplings is powerlike λ(E) ∝ (E/M)n. In both cases the perturbative
description breaks down at some high scale, ML or M . The only differ-



Cargese lectures on extra-dimensions 17

ence between the two cases is quantitative: in the renormalizable case,
for a not too small a value of the running coupling at low energy, the
cut-off scale ML is exponentially far away.

1.4 Examples

We can analyze from the effective field theory viewpoint some system
of interest. One instructive example is provided by pure gravity, whose
Lagrangian was given in eq. (1.1). To study the interactions let us focus
on the case of vanishing cosmological constant and let us expand the
metric field around the flat background

gMN = ηMN +
hMN

M
D
2
−1

D

. (1.20)

Eq. (1.1) will then be written as a power series in the fluctuation h






(∂h)2 +
1

M
D
2
−1

D

h(∂h)2 +
1

MD−2
D

h2(∂h)2 + . . .







· · ·

+b







1

M
D
2

+1

D

(∂2h)(∂2h) + . . .







+ . . . (1.21)

where we have been very schematic, suppressing all the tensor structure
indices and O(1) factors, but keeping the derivative expansion structure
manifest. Notice that the fluctuation h has been defined in such a way
that it is canonically normalized. The interactions then all scale by
inverse powers of the Planck mass. The above Lagrangian, after suitable
gauge fixing can be used to compute graviton scattering processes in
perturbation theory. For instance the amplitude A2→2 scales with the
energy E like

A2→2 ∼ ED−2

MD−2
D

(

1 + b
E2

M2
D

+ . . .

)

. (1.22)

The dots also include quantum effects, which scale like positive powers of
E/MD. For instance, by simple dimensional analysis, 1-loop effects in-
duced by the leading two derivative Lagrangian are of order (E/MD)D−2

with respect to the leading tree level contribution. In the ordinary purely
4 dimensional theory of Einstein gravity the Planck mass M4 ∼ 1018

GeV is much bigger than any energy scale relevant to astrophysics or
cosmology (if not for very early cosmology, even before inflation). Then
the truncation of the theory to the lowest two derivative Lagrangian,
the Einstein-Hilbert action, already allows a very accurate description
of the dynamics.
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As a second example consider the interactions of the branon excita-
tions Y of a 3-brane

Lbrane = −f4
√

ĝ + bf2
√

ĝR(ĝ) + . . . (1.23)

Substituting eq. (1.10) and writing the interactions in terms of the

canonical fields Ŷi = f2Yi it is straighforward to power count the scaling
of Feynman diagrams. For the Y Y → Y Y amplitude the Feynman
diagram expansion corresponds to the series

A2→2 =
E4

f4

(

1 + C
E4

f4
lnE + b

E2

f2
+ . . .

)

. (1.24)

where the first and second term (proportional to a calculable coefficient
C) are determined by the quartic interaction in eq. (1.11) respectively
at tree level and at 1-loop. The tension f turns out to be the energy
scale which controls the perturbative expansion. At energies E ∼ f the
effective field theory description surely breaks down, in analogy with
the case E ∼ M in the scalar toy model of the previous section. The
quantity (E/f)2 controls the strength of the interaction like α/4π does
in quantum electrodynamics.

The length L = 1/f can be interpreted as the quantum size of the
brane, in analogy with the Compton wavelength of a particle. Indeed in
the case of a 0-brane, a point particle, f coincides with the mass m and
we recover the usual definition of Compton wavelength. In the case of a
particle the length 1/m controls the domain of validity of the low energy
non-relativistic effective theory. If we try to localize one electron at a
distance < 1/m, then, by the indetermination principle, not only will
its momentum p be relativistic but the production of electron positron
pairs energetically possible. In the case of the brane, we can, for instance,
consider the quantum fluctuation of the linearized induced metric on the
vacuum . We find (cfr. eq. (1.10))

〈∂µY
i∂µYi〉 ∼

1

f4

∫

k3dk (1.25)

which shows that at wavelengths of order 1/f the fluctuation of the
brane position becomes itself of order 1/f : at these short wavelengths
the brane cannot be approximated by a smooth surface. Basically it is
not possible to talk about fluctuations in the position of the brane that
are shorter than 1/f in both longitudinal and transverse directions.

With the previous considerations in mind, it is instructive to consider
the field theoretic domain wall discussed in sect. 1.1.1. For definiteness
let us focus on the case of a 4-dimensional scalar theory, so that the wall



Cargese lectures on extra-dimensions 19

Figure 6. Cylindrical structure of 5-dimensional space-time compactified on M4 ×

S1.

is a 2-brane. The tension is τ =
√
gv3, while the cut-off of the effective

description is provided by m =
√
gv, the energy at which extra massive

modes come in. We have m = (gτ)1/3, so that as long as the original
4D theory was weakly coupled (g ≪ 1), the brane theory never gets into
a strong coupling regime. At the cut off scale m, the loop expansion
parameter of the effective brane theory m3/τ = g coincides with the
loop expansion parameter of the original scalar field theory.

1.5 Kaluza-Klein decomposition

So far we have been general: our discussion applies equally well to
compact and to infinite extra dimensions. However, since it is empiri-
cally very clear that we live in three macroscopic spatial dimensions, for
phenomenological applications we must focus on the case in which the
extra-dimensions are compactified at some small enough radius R. The
dynamics at distances much bigger than R will not be able to notice the
presence of the extra compact directions. To illustrate this fact let us
consider the simplest situation of a 5D scalar field φ with the 5th dimen-
sion compactified on a circle (see Fig. (6)) of radius R. Compactification
is formally expressed by the periodicity requirement

φ(x, x5) = φ(x, x5 + 2πR) (1.26)

Processes taking place on time scales T ≪ R, by causality and by local-
ity, cannot notice that the 5th dimension is compact. On the other hand
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to study processes happening on a time scale T >∼ R, and in particular at
energies E <∼ 1/R, the 5D local description is not the most adequate. In
this case it is convenient to expand the field φ in its Fourier components
with respect to the periodic coordinate x5.

φ(x, x5) =
n=∞
∑

n=−∞

φn(x)ei
nx5
R . (1.27)

where the reality of φ implies φ−n(x) = φn(x)∗. Notice that each differ-
ent coefficient φn in this expansion corresponds to a different 4D field.
The φn are called Kaluza-Klein (KK) fields. According to this expansion
the 5D kinetic action integrated over x5 becomes

∫

Lφdx
5 = −1

2

∫

[

(∂µφ)2 − (∂5φ)2
]

=

1
2

∞
∑

−∞

[

−|∂µφn|2 +
n2

R2
|φn|2

]

. (1.28)

The original 5D massless field has been decomposed in a tower of Kaluza-
Klein scalars φn with mass

mn = n/R. (1.29)

If we work at energy E, only a limited number n ∼ ER of KK can be
produced. In particular, for E < 1/R only the zero mode φ0 is available.
At such low energies the model looks 4-dimensional. The KK particles
appear only virtually, and their effect is reproduced by a suitable set
of local operators involving only the massless 4D fields. In the specific
example we are considering, the full space-time symmetry is just the 4-
dimensional Poincaré group times translations along the fifth direction:
P4 × U(1). The KK particle states represent just the irreducible repre-
sentations of this group. In particular the index n represents the charge
under the U(1) group of 5D translations: 5D translational invariance
shows up in 4D as the conservation of the KK indices ni summed over
the incoming and outgoing particles in a collision.

Along similar lines one can study the KK decomposition of a gauge
vector field AM . But rather than discussing it in detail we go directly
to the case of the graviton: the technical issues, associated to gauge
invariance, are analogous for both vector and tensor field. So let us
consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity
compactified on M4 × S1 with the action

2M3
5

∫

M4×S1

√
gR(g) (1.30)
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We can write the full metric tensor in block form

gMN (x, x5) =

(

gµν gµ5

g5µ g55

)

=

(

ηµν + hµν hµ5

hµ5 1 + h55

)

. (1.31)

To work out the spectrum we must compute the quadratic action in
the linearized field hMN and then use the gauge freedom provided by
the linearized 5D diffeomorphisms, xM → xM + ǫM (x, x5)

hMN → hMN + δhMN = hMN + ∂N ǫM + ∂M ǫN . (1.32)

to eliminate the redundant degrees of freedom. Here and in what follows,
working at linear order, indices are raised and lowered using the Lorentz
metric ηMN . We stress that the compactification of the fifth dimension
implies that all our fields, including ǫM are periodic in x5. Using the
5 gauge parameters ǫN we can essentially eliminate 5 combinations of
the metric fluctuations hMN . We can choose these 5 combinations to be
just h55 and hµ5. By using Fourier modes we have that δh55 = 2∂5ǫ5
becomes

δh
(n)
55 = 2inǫ

(n)
5 (1.33)

which explicitly shows that we can eliminate all the modes but h
(0)
55 ,

which is gauge invariant. The gauge invariance of zero modes like h
(0)
55

follows from the periodicity of the gauge transformation
∮

S1

δh55 = 2

∮

S1

∂5ǫ5 = 0 (1.34)

and is a generic features of gauge theories on compact spaces. The same
thing happens for hµ5

δh
(n)
µ5 = ∂µǫ

(n)
5 + inǫ(n)

µ . (1.35)

Therefore by using the n 6= 0 modes of ǫM we can go to a gauge where

h55(x, x5) ≡ φ(x) hµ5(x, x5) ≡ Aµ(x) (1.36)

while hµν(x, x5) is unconstrained. However we still have the zero mode
gauge freedom

Aµ → Aµ + ∂µǫ
(0) h(0)

µν → h(0)
µν − ∂µǫ

(0)
ν − ∂νǫ

(0)
µ . (1.37)

The residual scalar mode φ, usually called radion, is associated to fluc-
tutations in the proper length L of the radius of compactification δL =
∮

h55/2 = πRφ. The graviphoton Aµ, as shown in eq. (1.37), is the
gauge field associated to 4D local translations of the 5th coordinate.
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The associated charge is just the momentum along the fith dimension,
i.e. the KK index n.

Defining the KK modes via

hµν ≡
+∞
∑

n=−∞

h(n)
µν e

i
nx5
R (1.38)

the linearized 4D action becomes

L(2)
4D = M3

5πR

{

[

∑+∞
−∞ h(n)µν

h
(−n)
µν − h(n)µ

µ h(−n)ν
ν

+ 2h
(n)
µν ∂µ∂νh(−n)ρ

ρ − 2h
(n)
µν ∂µ∂ρh(−n)ν

ρ

+ n2

4R2 (h(n)µ
µh

(−n)ν
ν − h(n)µν

h
(−n)
µν )

]

+ 2φ(∂µ∂νh
(0)
µν − h(0)µ

µ) − FµνF
µν

}

(1.39)

where Fµν = ∂µAν − ∂νAµ. By looking at the coefficient of the zero
mode action we deduce that the effective 4-dimensional Planck scale is

M2
4 ≡M3

5 2πR (1.40)

The ∂5 terms of the 5d Lagrangian have turned into mass terms for the
n 6= 0 modes. As first noticed by Fierz and Pauli [14], the specific tensor
structure of this mass term is the only one ensuring the absence of ghosts

and tachyons in h
(n)
µν . The equations of motion for the massive modes

reduce indeed to
(

+
n2

R2

)

h(n)
µν = 0 ∂µh(n)

µν = h(n)µ

µ = 0 (1.41)

where the second and third relations follow by taking the divergence
and trace of the equation of motion. This is completely analogous to
the well known case of a massive vector Vµ. There the divergence of
the equation of motion gives the constraint ∂µVµ = 0, implying that
only 3 out of the 4 degrees of freedom propagate, as it should be for
a J = 1 massive particle. Here, due to the constraints, we have 10 −
5 = 5 propagating states, corresponding to a massive J = 2 particle.
An arbitrary symmetric two index tensor Hµν can be decomposed in
components of definite spin as

Hµν = HTT
µν +∂µE

T
ν +∂νE

T
µ +

(

ηµν − ∂µ∂ν

∂2

)

Φ+
∂µ∂ν

∂2
Ψ ≡ 2⊕1⊕0Φ⊕0Ψ

(1.42)
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where ET
µ and HTT

µν are respectively transverse and transverse-traceless

(∂µET
µ = ∂µHTT

µν = ηµνHTT
µν = 0) and the spin of each component is in-

dicated in an obvious notation. By eq. (1.41) onlyHTT survives on-shell.
An instructive exercise is to construct the projectors on HTT , ET ,Φ and
Ψ by writing them in a compact way in terms of the transverse and
longitudinal vector projectors ΠT

µν = ηµν − ∂µ∂ν/∂
2, ΠL

µν = ∂µ∂ν/∂
2.

Another instructive exercise is to write the kinetic Lagrangian in terms
of the various projectors, in complete analogy with the massive J = 1
case, and from that to derive the massive J = 2 propagator

〈h(−n)
µν h(n)

ρσ 〉 =

1
2

(

Π̂T
µρΠ̂

T
νσ + Π̂T

µσΠ̂T
νρ

)

− 1
3 Π̂T

µνΠ̂
T
ρσ

p2 + n2

R2

≡ Πµνρσ(mn)

p2 +m2
n

(1.43)

where Π̂T
µν = ηµν − pµpν/(mn)2.

Let us now focus on the zero modes. Notice that the radion mixes
kinetically to the graviton. It is convenient to diagonalize the kinetic

term via the Weyl shift h
(0)
µν ≡ h̄µν − 1

2φηµν , after which φ acquires a self
kinetic term

3

2
M3

5πRφ φ (1.44)

while h̄µν has obviously the kinetic term of massless graviton. At this
point we can gauge fix the residual 4D reparametrization and gauge
symmetry by using respectively the de Donder and Feynman gauges

2M3
5πR

{

(

∂µh̄µν − 1

2
∂ν h̄

µ
µ

)2

− (∂µAµ)2
}

. (1.45)

On shell we have 2 physical helicity states in both h̄ and A. These,
including φ, add up to 5 states: the same number we found at each
excited level, but here they are shared among particles of different spin.

The presence of the radion φ makes this theory quite different from
ordinary 4D Einstein gravity (the additional scalar is sometimes called a
Brans-Dicke field). The tensor field that couples to ordinary 4D matter
and thus describes the observable fluctuations of the 4D geometry is

the original metric h
(0)
µν and not h̄µν . Therefore the relevant graviton

propagator is

〈h(0)
µν h

(0)
ρσ 〉 = 〈h̄µν h̄ρσ〉 +

1

4
〈φφ〉

=
1

M2
4

{
1
2 (ηµρησν + ηµσηρν) − 1

2ηµνηρσ

q2

+
1

6

ηµνηρσ

q2
} (1.46)
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where the first term is just the result we would get in ordinary GR and
the second contribution, proportional to 1/6, is due to the radion. In
the non-relativistic regime the effects of the tensor and scalar field are

indistinguishable. The Newton constant is determined by 〈h(0)
00 h

(0)
00 〉 and

given by

32πGN =
2

M2
4

(

1

2
+

1

6

)

=
4

3

1

M2
4

(1.47)

where we have indicated separately the contributions of the tensor and
of the scalar. However in the relativistic regime the implications of the
two terms are quite different. In particular φ does not couple to photons
as they have a traceless energy momentum tensor. Now, one of the most
accurate tests of GR is the measurement of the deflection of light by the
gravitational field of the Sun: the experimental result agrees with the
theory to about 1 part in 103. In the theory at hand, φ does not con-
tribute to this deflection, and the scattering angle, expressend in terms
of the non-relativistic GN of eq. (1.47), is therefore only 3/4 of the GR
prediction. This result is completely ruled out by the data. In order to
meet consistency, φ should be given a mass mφ, so that its contribution
to the potential will decay as e−mφr/r and become quickly irrelevant for
r > 1/mφ. Notice that giving a mass to φ corresponds to stabilizing
the size of the 5th dimension. The agreement between the value of GN

measured in post Cavendish experiments [21–23] down to distances of
order 100 µm with that governing post Newtonian corrections in the
solar system forces the mass of φ to be bigger that h̄c/100µm ∼ 10−3

eV.
To gain another viewpoint on the compactification of gravity from D

down to 4 dimensions, it is worth to count the physical states of gravity
around ordinary D-dimensional (non-compact) Minkowsky space. The
metric symmetric tensor hMN corresponds to D(D− 1)/2 fields. By us-
ing the D gauge transformations ǫN we can eliminate D of these fields.
For instance we can go to the Gaussian normal gauge where all time com-
ponents vanish h00 = h0i = 0. This choice is the analogue of Coulomb
gauge in Maxwell’s theory. However as in any gauge theory, even after
fixing the gauge, we must still impose the equations of motion of h00

and h0i as an initial time constraint

∂L
δh00

= ∇i∇jhij −∇i∇ih
j
j |t=0 = 0

∂L
δh0i

=
(

∇j ḣij −∇iḣ
j
j

)

|t=0 = 0

(1.48)
where by the dot and by ∇i we indicate respectively detivatives with
respect to the time, t, and space, xi, coordinates. The divergence of the
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hij equations of motion

(

∇jḧij −∇iḧ
j
j

)

= 0 (1.49)

ensures that both constraints remain valid at all times§. To clarify things
it is convenient to decompose hij in spin components as previously done
in eq. (1.42)

hij ≡ HTT
ij + ∇iV

T
j + ∇jV

T
i +

(

δij −
∇i∇j

∇2

)

H +
∇i∇j

∇2
V (1.50)

Moreover it should be noticed that there is a residual gauge freedom
preserving the Gaussian normal condition

ǫ0 ≡ ǫ0(xi) ǫi ≡ ǫTi (xi) −∇i(ǫL(xi) + tǫ0(xi)). (1.51)

Notice that the ǫ’s depend only on the space coordinates and that ∇iǫTi =
0. Now, the divergence and trace of the hij equation of motion imply

∇iḦ = ∇2V̈ T
i = 0 V̈ + (D − 2)Ḧ − (D − 3)∇2H = 0. (1.52)

Assuming that our fields F vanish fast enough at spacial infinity, ∇2F =
0 implies F = 0. The first two equations then imply H = H0(xi) +
tH1(xi) and V T

j = V0
T
j (xi)+tV1

T
j (xi). The initial time constraints imply

however H0 = H1 = V1
T
j = 0. In turn eq. (1.52) implies V = V0(xi) +

tV1(x). At this point we are left with D functions V0
T
i , V0, V1 which

can be completely eliminated by the residual gauge freedom ǫTi , ǫL, ǫ0.
Notice that the initial time constraints eliminate 1 dynamical variable,
H, plus D − 1 “velocities” Ḣ, V̇ T

i . Instead the gauge freedom allows to
eliminate D − 1 variables and 1 velocity. This generalizes the situation
in electromagnetism where the Gauss constraint eliminates 1 velocity,
∇iȦi, while the residual gauge freedom eliminates ∇iAi.

The result of all this is that, after going to the h00 = h0i = 0 gauge,
an additional D deegrees of freedom are eliminated (V T

i ,H, V ) and we
are left with D(D − 1)/2 − 2D = D(D − 3)/2 propagating fields, corre-
sponding to HTT

ij .
Before concluding this section we discuss the more general case of

Einstein gravity in D = 4 + n dimensions, with the n extra dimensions
compactified on a square torus T n [15]. Indicating by i and xi the extra

§Again this is analogous to electromagnetism. In Coulomb gauge, the A0 equation of motion

constraint gives Gauss law
−→
∇ ·

−→
E = 0 at initial times. Maxwell’s equation

−̇→
E =

−→
∇ ×

−→
B

implies the validity of Gauss’s law at all times.
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field original (−) gauge (−) eqs. motion propagating
d.o.f fixing d.o.f.

(J = 2) hµν 10 0 −5 5

(J = 1) hµi 4n −4 −(n − 1) 3(n − 1)

(J = 0) hij
n(n+1)

2
−n 0 n(n−1)

2

Table 1. Number of degrees of freedom (d.o.f.) off-shell and on-shell for each field
component

indices and coordinates, T n is defined by the equivalence relation xi ∼
xi + 2πRni with ni a vector with integer entries. KK levels are labelled
by a vector of integers (−→n )i = ni associated to the momentum ni/R
along the T n directions. The counting of physical degrees of freedom
for each massive KK level is shown in Table (1). It is easy to check
that gauge invariance allows to eliminate the 4D vector nihiµ (4 fields)
and the scalars nihij (n fields). On shell n− 1 longitudinal components
from the remaining n− 1 vectors and 5 more components from hµν are
eliminated. The propagating degrees of freedom are correspondingly
n− 1 massive vectors and 1 massive graviton. Thus there finally result
(n + 4)(n + 1)/2 = D(D − 3)/2 physical states, in agreement with our
previous derivation. At the zero mode level there is the same number

of degrees of freedom, but they are shared among 1 graviton h
(0)
µν , 2n

graviphotons Ai
µ and a symmetric matrix of n(n+ 1)/2 scalars φij . The

scalars φij are the moduli describing the fluctuations in the shape and
size of the torus. In particular the trace φi

i describes the fluctuations
of the torus volume. This field mixes to the 4D graviton leading to a
propagator with an extra scalar term

1

M2
4

{
1
2 (ηµρησν + ηµσηρν) − 1

2ηµνηρσ

q2
+

n

2n+ 4

ηµνηρσ

q2
}. (1.53)

In order to agree with observations, the volume modulus should be sta-
bilized.

1.6 Large Extra-Dimensions

A very interesting arena where to apply the concepts that we intro-
duced is given by the scenario of large extra dimensions. This scenario
has been advocated by Arkani-Hamed, Dimopoulos and Dvali (ADD)
as an alternative viewpoint on the gauge hierarchy problem [2]. With
respect to the standard picture for physics beyond the SM the ADD
proposal represents a dramatic shift of paradigm. In the standard sce-
nario, fundamental interactions are described by an ordinary quantum
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field theory up to energy scales larger that the Grand Unification scale
1016 GeV. Above this scale quantum gravity effects or string theory im-
ply a radical revision of fundamental physics. According to the ADD
proposal, instead, this radical revision is needed right above the weak
scale! The proposal is specified by three main features

There exists a number of n new spacial compact dimensions. For
instance a simple manifold could be just M4 × T n.

The fundamental Planck scale of the theory is very low MD ∼
TeV.

The SM degrees of freedom are localized on a 3D-brane stretching
along the 3 non-compact space dimensions.

As we will now explain, these three requirement allow for a drastically
different viewpoint on the hierarchy problem, without leading to any
stark disagreement with experimental observations. Let us focus on
gravity first. As we have already seen in the simple case of Kaluza-
Klein’s theory, the macroscopic Planck mass M2

4 of the effective 4D
theory is related to the microscopic MD via

M2
4 = M2+n

D Vn (1.54)

where Vn is the compactification volume. For a torus we have Vn =
(2πR)n and the above result follows from a simple generalization of
the analysis we previously did on S1. We can also obtain this rela-
tion by considering directly the effective action for a purely zero mode
gµν(xµ, xi) ≡ ḡµν(xµ) fluctuation of the metric along M4

2M2+n
D

∫

d4xµdnxi√gRD(g) ↔ 2MDVn

∫

d4xµ√ḡR4(ḡ) (1.55)

where we have explicitly indicated the dimensionality of the Ricci tensor.
The main remark of ADD is based on eq. (1.54). Provided the volume
of compactification is large enough, even a low gravity scale MD can
reproduce the physical value M4 = 2 × 1018 GeV. Before discussing the
needed size of R, notice that eq. (1.54) has a very simple interpretation
via Gauss’s theorem. Consider the Newtonian potential ϕ ≡ h00/2 gen-
erated by a test mass M in the linearized approximation. At a distance
r ≪ R the compactness of the extra dimensions does not play a relevant
role: the potential is to a good approximation SO(3+n) symmetric and
given by

ϕ|r≪R ≃ − Γ(n+3
2 )

(2n+ 4)π
3+n

2

1

M2+n
D

M

r1+n
. (1.56)
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n R

1 6 × 1013 cm

2 0.4 mm = 1/(10−4eV)

4 10−8 mm = 1/(20KeV)

6 2.5 × 10−11 mm = 1/(10MeV)

Table 2. Radius of compactification for fixed value of MGRW

D = 1 TeV , where
(MGRW

D )2+n
≡ 4(2π)nM2+n

D is the Planck mass defined in the first paper of ref. [15].

as dictated by Gauss’s theorem. At r ≫ R the field lines stretch along
the 3 non-compact directions, the potential is only SO(3) symmetric.
The surface encompassing the field flux is now the two sphere (non-
compact directions) times the compactification manifold; for instance
S2 × T n. Applying Gauss’s theorem we find then

ϕ|r≫R ≃ − n+ 1

16π(n + 2)M2+n
D Vn

M

r
≡ n+ 1

16π(n + 2)

1

M2
4

M

r
(1.57)

from which we recover again eq. (1.54). In practice the large distance
field is made weaker by the large extradimensional volume in which the
field lines can spread. (The dependence of eq. (1.57) on n is due to the
massless radion. For n = 1 it agrees with eq. (1.47), while for general n
eq. (1.57) is simply the Fourier transform of eq. (1.53).).

If the ultimate cut-off MD is of order the weak scale itself G
−1/2
F , then

the expected quantum corrections to the Higgs mass are of the order of

its phenomenologically favored value mH ∼ G
−1/2
F . In this respect the

hierarchy problem, in its ordinary formulation, is practically eliminated
when MD ∼ 1 TeV. With this input, and with the observed value of
M4, eq. (1.54) predicts the size of Vn. In Table 2, we give the radius
of compactification in the case of a square n-torus. We stress, see eqs.
(1.56,1.57), that Newton’s law is reproduced only at distances larges
than R. The case n = 1 requires a radius of compactification of the size
of the solar system, which is largely ruled out. However already for n
greater or equal than 2 the resulting radius is not unreasonable. Indeed
experimental tests of gravity at distances shorter than a millimeter are
extremely arduous. This is largely due to the presence of Van der Waals
forces, which tend to swamp any interesting measurement. At present
the best bound relegates O(1) deviations from Newton’s law (the ones
we would expect is our scenario at r <∼ R) to distances shorter than
200µm. In this respect the case n = 2 is not barely inconsistent. n = 2
is also experimentally interesting, as it predicts deviations in the range of
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present sensitivities. The search for deviations from Newton’s law is an
active experimental field, also greatly stimulated by the ADD proposal.

Focusing on gravity only, we have shown that for n ≥ 2 the radius of
compactification is small enough. On the other hand the Standard Model
as been verified down to distances much shorter than the radii shown in
the table. The SM is a 3+1 dimensional quantum field theory and its
predictions depend crucially on this property. LEP, SLC and Tevatron
have tested the SM up to an energy of order 1 TeV, corresponding to
a distance of order 10−16 cm. Experimentally then, the SM is a 3+1
dimensional system down to a distance much shorter that the radius of
compactification. Localizing all the SM degrees of freedom on a 3-brane
is an elegant way to realize this experimental fact, while keeping larger
radii of compactification. Now it will be the brane size, or whatever other
characteristic brane cut-off scale, perhaps 1/MD itself, to characterize
the length scale down to which the SM is a valid effective field theory.
This scale can conceivably be >∼ 1 TeV. For instance, the ADD scenario
could be realized in type I string theory [16, 17] with the SM localized
on a D-brane. In this case the string scale MS , governing the mass of
Regge resonances, acts as UV cut off of the brane effective theory.

This completes the basic description of the ADD scenario. It must
however be said that, as it stands, the ADD proposal is a reformulation
of the hierarchy problem and not yet a solution [18]. Instead of the small
Higgs vacuum expectation value (VEV) of the old formulation, we now
need to explain why the compactification volume Vn is so much bigger
that its most natural scale 1/Mn

D:

VnM
n
D ∼ 1033. (1.58)

Vn, or equivalently the radius R, is a dynamical degree of freedom, a
scalar field. We have already shown that in the case of T n the fluctuation
of Vn ≡ (2πR)n corresponds at linear order to the trace hi

i. Since we
want a large 〈R〉 the scalar potential V (R) will have to be much flatter
than naively expected at large values of R. As far as we know, the most
natural way to achieve such flat potentials is by invoking supersymmetry.
So, if the ADD scenario is realized in Nature it is likely to be so together
with supersymmetry at some stage. Notice that in the conventional
formulation of the hierarchy problem supersymmetry is invoked to ensure
a flat potential at small values of the Higgs field, i.e. a small Higgs mass.
As a matter of fact, the ADD proposal maps a small VEV problem
into a basically equivalent large VEV problem. In the new scenario the
hierarchy problem has become a sort of cosmological constant problem.
Indeed a vacuum energy density Λ4+n would add to the radius potential
a term ∼ Λ4+nRn. This grows very fast at large R so we expect [18] that
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Λ4+n should be much smaller than its natural value ( TeV)4+n. In this
respect the presence of bulk supersymmetry would be a natural way to
enforce a small Λ4+n, thus helping to explain the large volume. Indeed
ref. [19] presents a simple mechanism which produces large radii at
n = 2, but which works for a vanishing bulk cosmological constant Λ6.
Although the model considered is not supersymmetric it is conceivable
that the same mechanism will generalize to a supersymmetry set-up and
thus lead to a truly natural generation of the hierarchy.

One reason why the ADD proposal is important is theoretical. The
hope is that such a drastic revision of our view of fundamental inter-
actions may open the way to new solutions to old problems, like the
cosmological constant problem for instance. Having string theory right
at the weak scale may also end up being the right ingredient to build
the right string model. However none of these breakthroughs has come
yet. The interest in the ADD proposal is at the moment associated to its
potentially dramatic phenomenological implications [20]. There are two
classes of laboratory tests of large extra-dimensions. We have already
commented on the first class, the search for deviations from Newton’s
law at short but macroscopic distances. This is done in table top ex-
periments. These deviations could be determined by the light moduli,
like the radius R [18], or by the lowest Kaluza-Klein (KK) J=2 modes.
Another source of deviation could be the lowest KK mode of a bulk
vector field gauging baryon number [20]. At present, O(1) deviations
from Newton’s law have been excluded down to a length ∼ 200µm [21],
while forces that have a strength > 104 of gravity are bounded to have
a range smaller than 20µm [22, 23]. Notice that this class of effects
crucially depends on the features of the compactification manifold at
large “lengths”, as they determine the masses of the lightest modes. For
instance the presence of even a small curvature of the compactification
manifold can drastically affect these prediction by lifting the lightest
states. On dimensional grounds, if the typical curvature length is L the
modes with mass < 1/L will be affected and possibly made heavier.

The second class of tests is given by high energy collisions [15]. In this
case we deal with either gravitons at virtuality Q ≫ 1/R or with real
gravitons measured with too poor an energy resolution to distinguish
individual KK levels. In practice, for high energy processes happening
on a short time scale τ ∼ 1/E ≪ R, causality and locality imply that we
cannot notice that the extra dimensions are compact. Therefore we can
take the limit R→ ∞ and work as if our brane were embedded in infinite
(4 + n)-dimensional Minkowski space. (If the compactification manifold
had curvature length L ≪ R, then the same reasoning would apply for
energies E ≫ 1/L). Moreover at energy E < MD, as discussed in section
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Figure 7. Example of two processes with missing energy by bulk graviton radiation.

1.1.4, we can reliably compute the amplitudes in a systematic derivative
expansion. The characteristic signals are then associated to the emission
of gravitons (G) which escape undetected into the extra dimensions.
Interesting examples (see the figure) are given by the processes e+e− →
γ + G = γ+ 6E or pp → jet+ 6E or possibly by the invisible decay of
the Higgs into just one graviton [24]. The latter process does not violate
the conservation of angular momentum, since there are KK gravitons of
spin 0. The relevant interactions are obtained by expanding the brane
action for the SM (as in eq. (1.9)) in powers of the induced metric.
For processes with the emission of one graviton we have just the energy
momentum term

Lint = −1

2
T SM

µν hµν(x, yi = 0) (1.59)

where we have assumed the brane to be located at yi = 0. Emission
rates can be computed by expanding hµν(x, yi = 0) in KK modes. For
instance, the differential cross section for e+e− → γG

d2σ

dxγd cos θ
(e+e− → γG) = α

128
1

(4π)
n
2 Γ(n

2
)

(

s
n
2

Mn+2
D

)

[

Fn(xγ , cos θ) +O( s
M2

D

)

]

(1.60)

Fn(x, y) =
2(1 − x)

n
2
−1

x(1 − y2)

[

(2 − x)2(1 − x+ x2) − 3y2x2(1 − x) − y4x4
]

.

(1.61)
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Here xγ = 2Eγ/
√
s, Eγ is the photon energy, and θ is the angle between

the photon and beam directions. At leading order in E/MD this process
is predicted just in terms of one new parameter, MD itself. Higher order
corrections will depend on new operator coefficients. Similar results can
be found for all the other processes [15].

Notice that graviton emission violates the conservation of momentum
along the y directions. This is not surprising since the presence of the
brane at y = 0 breaks translation invariance. However one might worry
that non-conservation of the brane energy momentum might lead to in-
consistencies in the interaction with gravity; after all Einstein equations
demand energy momentum conservation. But this is not the case. Even
though the global momentum Pi along yi is not conserved (or better not
defined) the full energy momentum tensor TMN for the brane plus mat-
ter is indeed locally conserved. Conservation of a local current in the
absence of a globally conserved charge is the landmark of spontaneous
symmetry breaking, and is precisely what happens here. As we have
said before, translations in yi are a non-linearly realized symmetry, with
the branons Y i acting as Goldstone bosons. Local conservation of mo-
mentum implies the presence of the branons and hence their production
in fundamental processes. Since the brane is infinitely massive it cannot
undergo a global recoil, but conservation of its energy momentum tensor
implies the possibility of local recoil by branon emission. The emission of
branons is another possible signature of the braneworld scenario. Bra-
nons Y are emitted in pairs. At lowest order one finds [25]

d2σ

dxγd cos θ
(e+e− → γY Y ) =

α

1920π5

(

s3

f8

)[

F6(xγ , cos θ) +O(
s

M2
D

)

]

(1.62)
which, up to an overal constant, is the same result one obtains for gravi-
ton emission at D = 10. A similar result is obtained in the case of
hadronic collisions. Comparing eqs. (1.60,1.62) to experiments one ob-
tains experimental bounds of the scales MD and f . As the effect grows
with

√
s the best bounds are obtained from the higher energy exper-

iments, LEP2 and Tevatron. In particular LEP2 implies the bound
f > 100 GeV [25]. The combined LEP Tevatron bounds on MD [27]are
shown in Table 3. These direct bounds are not very strong. The reason
is that the cross section is suppressed by a rather large power of E over
the high scale. The LHC will be a better machine to test these ideas
through the direct production of gravitons or string states [15, 26]. At
present stronger bounds come from other effects, associated to contact
4 fermion interactions, that are expected in the ADD scenario model
without being a distinctive feature. The translation of the bounds from
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n 2 3 4 5 6

MGRW

D (TeV) > 1.45 > 1.09 > 0.87 0.72 0.65

Table 3. Collider bounds on MGRW

D

these other effects into bounds on MD is a model dependent procedure,
but it is fair to say that they roughly imply MD >∼ 3 TeV [27]. Finally
we should mention that, with enough luck, the LHC may also study
gravitational scattering at energies in excess of the Planck mass MD,
the so-called transplanckian regime. For MD ∼ 1 − 3 TeV, the most
energetic collisions at LHC, at

√
s = 14 TeV, should start manifesting

the transplanckian dynamics, which consists of black-hole [28] or string
ball [29] production and also of the characteristic gravitational elastic
scattering [30]. The common features of these processes is to give cross
section at high energy, and fixed angle, that asymptotically grow like a
power of energy. This would be an undisputable signal that the high
energy dynamics of gravity, a force whose associated charge is energy
itself, has been detected.

Computations like those we have outlined are relevant also to study
the cosmological and astrophysical implications of the ADD scenario.
The phenomenology of these models is now a very wide field. Unfortu-
nately in order to cover it appropriately we would be lead outside the
main goal of the present lectures, which concerns the basic physics prin-
ciples and tools. Excellent pedagogical reviews of recent results with
extensive references are given by refs. [31, 32].

2. Part II: the Randall-Sundrum model

In the second part of these lecture we will focus on a specific model
proposed by Randall and Sundrum (RS) which is interesting both from
the theoretical and the pedagogical viewpoint. On one side the RS model
realizes a new way of approaching the hierarchy problem, on the other it
is simple enough to allow a number of rather instructive computations.
Moreover it naturally demands the introduction of the concept of holog-
raphy, the basis of the AdS/CFT correspondance [33, 34]. All these
reasons make the RS model a very rich and instructive lecture subject.

2.1 The Model

Let us consider a model with a 5th dimension and let us compactify it
by considering the following equivalence relations for the fifth coordinate
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Figure 8. Graphical representation of S1/Z2.

y
y ∼ y + 2π y ∼ −y. (2.1)

The first relation, alone, would define a circle S1. The second relation,
a Z2 reflection, implies identification of opposite points on the circle, as
shown in the Fig. (8). y = 0 and y = π are fixed points under Z2 on
the circle and are identified with themselves. The resulting space from
this identifications is called a S1/Z2 orbifold. S1/Z2 is equivalent to the
[0, π] segment, but for computational purposes it is useful work with the
full S1 covering space with Z2 identification. Consider now the metric
on this space

ds2 = gµνdx
µdxν + 2gµ5dx

µdy + g55dy
2. (2.2)

The points related by y → −y are physically identical, and under Z2

the interval ds2 should be invariant. Since dy → −dy under Z2, we then
have

gµν(x, y) = gµν(x,−y) g55(x, y) = g55(x,−y) gµ5(x, y) = −gµ5(x,−y).
(2.3)

From the last identity and by the continuity of gµ5 it follows that gµ5 (x, 0)
= gµ5(x, π) = 0. Changes of coordinates

x̄µ = x̄µ(x, y) ȳ = ȳ(x, y) (2.4)

should still parametrize an orbifold and respect eq. (2.1). Without loss of
generality we can impose ȳ to be the new orbifold coordinate satisfying

ȳ(x, y + 2π) = ȳ(x, y) + 2π ȳ(x,−y) = −ȳ(x, y) (2.5)

generalizing what we did before for the circle. Notice that under reparame-
trizations the fixed point are mapped onto themselves ȳ(x, 0) = 0,
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ȳ(x, π) = π ¶ At the boundaries, eq. (2.4) reduces to 4D reparametriza-
tions of the boundaries themselves

0) xµ → x̄µ(x, 0)
π) xµ → x̄µ(x, π) (2.6)

under which the induced metrics

g0µν ≡ gµν(x, 0) gπµν ≡ gµν(x, π) (2.7)

are covariant tensors. Now, using g0,π we can write the most general
invariant action involving also fields and interactions localized at the
boundaries

S =

∫

d4x

∫ 2π

0
dy
{√

g [2M5R(g) − τ ] (2.8)

+ δ(y)
√
g0 [L0 − τ0] + δ(y − π)

√
gπ [Lπ − τπ]

}

where τ and τ0, τπ are respectively the bulk cosmological constant and
boundary tensions. By L0,π we indicate any other interactions involving
fields localized at the boundary. Neglecting the latter, the 5D Einstein
equations are

√
g GMN =

−1
4M3

5

[

τ
√
ggMN +

(

τ0
√
g
0
g0µνδ(y) + τπ

√
g

π
g0πµνδ(y − π)

)

δµ
M δν

N

]

(2.9)

We look for a solution with the following Poincaré invariant ansatz

ds2 = e−2σ(y)ηµνdx
µdxν + r2cdy

2 (2.10)

where rc is a parameter with dimension [length] parametrizing the proper
distance between the two fixed points. The µ5 equation is identically
satisfied while the 55 is

(

σ′

rc

)2

= − τ

24M3
5

≡ k2. (2.11)

¶On the segment [0, π] these are the reparametrizations that do not move the boundaries. One
could allow more general reparametrizations under which the boundary points are shifted.
The resulting field space would be obviously larger. The physics would however not be
affected. From the point of view of this more general formulation our field space is obtained
just by a partial gauge fixing.
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implying a negative cosmological constant τ < 0. Imposing the orbifold
symmetry eq. (2.11) has two solutions (up to trivial coordinate changes):

σ(y) = ±krc|y|. (2.12)

Finally the µν equation is

σ′′ =
rc

12M3
5

[τ0δ(y) + τπδ(y − π)] (2.13)

which is solved by eq. (2.12) provided the following conditions hold

τ0 = −τπ = ±24M3
5 k. (2.14)

Without loss of generality, we can choose the solution σ = +krc|y|. No-
tice that the tension τπ is negative. We will later show that this does
not lead to instabilities. Eq. (2.14) represents a tuning of two parame-
ters, in the absence of which there would not exist a static solution with
Poincaré symmetry. This does not seem at all a desired feature for a
model aiming at a solution of the gauge hierarchy problem! The meaning
of eq. (2.14) will become more clear below. We will then explain that
in the complete model there remains just one tuning, the one associated
to the 4D cosmological constant. This is a situation common to all the
other solutions of the gauge hierarchy problem, like supersymmetry or
technicolor.

Our orbifold with metric

ds2 = e−2krc|y|dxµdx
µ + r2cdy

2 (2.15)

corresponds to two slices of 5-dimensional anti-de Sitter space (AdS5)
glued back to back at the fixed points. The full AdS space is obtained by
|y| → y and for y ∈ (∞,+∞). k2 = R5(g) parametrizes the curvature of
this space. In order for our effective field theory to be a valid description
it should be k ≪M5. A region with fixed x coordinates exported along
y describes a throat that gets exponentially narrow at larger y. Fig.
9 depicts the same contraction for the wavelength of infalling quanta,
which we will later discuss in more detail. It is sometimes said that the
space is “warped” by the y dependent factor multiplying the 4D metric.

Our metric can be used to Redshift 4-dimensional mass parameters
as suggested at the beginning of these lectures. Assume we place at 0
and π two identical copies of a 4D QFT. Exactly like with two atoms in
the gravitational field of a star, any direct experimental comparison of
the masses of the equivalent states at each brane gives

mπ

m0
= e−krcπ. (2.16)
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Figure 9. Contraction of wavelengths as particles fall through the AdS throat.

For e−krcπ ∼ mZ/M4 this effect could be relevant in explaining the weak
scale hierarchy. Because of the relative shift of mass scales the 0 and π
fixed points are called respectively the Planck and TeV brane. Notice
also that, because of the appearance of an exponential factor, a Redshift
of order mz/M4 ∼ 10−16 is already obtained when the proper radius of
compactification rcπ is only about 35−40 times larger than the curvature
radius 1/k. The latter could in turn be not much bigger than the 5D
Planck length 1/M5. Therefore a large hierarchy can be obtained from
a rather small fifth dimension.

2.2 Low energy effective theory

The RS model is a generalization of the Kaluza-Klein theory that
we already studied. It is then straightforward for us to discuss its zero
mode content and to derive the low energy effective field theory. The
main difference with respect to gravity on S1, is that gµ5 is odd under
orbifold parity, see eq. (2.3). Then gµ5 does not have a graviphoton
zero mode and we can go to a gauge where gµ5 ≡ 0. On the other hand
the graviton and radion zero modes are just obtained by promoting the
Lorentz metric ηµν and radius rc to 4-dimensional fields [3]

ds2 = GMNdX
NdXM = e−2kT (x)|y|ḡµν(x)dxµdxν + T (x)2dy2. (2.17)

Notice indeed that when ḡµν and T are constant over space-time, eq.
(2.17) is a solution of the equations of motion.(T = rc is not fixed by
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the solution, while the solutions with arbitrary constant ḡµν is simply
obtained from the original solution by applying the coordinate change,
xµ → Aµ

νx
ν , with Aρ

µAρν = ḡµν .) Then the 5D action is stationary over
the field manifold of constant ḡµν and T , i.e. there is no “potential”
for ḡµν and T , so that they must correspond to massless particles. By
substituting the ansatz in eq. (2.17) in the action we find indeed

Leff
4 =

∫

L5(ḡ, T )dy =

(

M5

k

)3 √
ḡ
{(

2k2 − 2µ2
)

R(ḡ) + 12(∂µ)2
}

(2.18)
where

µ(x) = ke−kT (x)π. (2.19)

and where all the metric contractions are done with ḡµν . This Lagrangian
correctly describes the interactions of the zero modes up to terms with
more than two derivatives. We will explain this in more detail when
deriving the KK spectrum. By substituting 〈T 〉 = rc in the above equa-
tions we can read the effective 4-dimensional Planck scale

M2
4 =

M3
5

k

(

1 − e−2krcπ
)

. (2.20)

By working with T ≡ rc, eq. (2.17) substituted in the 5D Einstein
term gives

√
gR5(g) =

√
ḡrce

−2σ(y)R4(ḡ) + . . .. Eq. (2.20) then simply
corresponds to the integral

M2
4 = M3

5

∫ π

−π
e−2σ(y)rcdy. (2.21)

The crucial aspect of this result is that M4 is completely dominated by
the region close to the Planck brane, where the warp factor is of order
1. Therefore the value of M4 is insensitive to the Redshift of mass scales
that takes place in the bulk and which is maximal at the TeV brane.

Now that we have calculated the Planck mass we can discuss the issue
of the gauge hierarchy in more detail. Assume we localize all the fields
of the Standard Model on the TeV brane. We indicate collectively by
H, ψα, and Aµ the scalars, fermions and vectors, and by m the mass
parameters (any mass parameter, including the Higgs mass). According
to the ansatz of eq. (2.17), and keeping the radion fixed for simplicity,
the induced metric at the TeV brane is

gπµν = e−2σ(π)ḡµν(x). (2.22)

so that the low energy effective action including the y = π boundary
contribution is

Leff =
{2M3

5

k

(

1 − e−2σ(π)
)√

ḡR(ḡ) +
√
gπLπ(gπµν ,H, ψα,Aµ,m)

}

.

(2.23)
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Notice that the metric that couples to matter is rescaled with respect
to the one that appears in the Einstein term, as if different length units
were used in the two actions. To make physics manifest it is useful to
perform a constant Weyl transformation on the matter action. This is
just a reparametrization of field variables corresponding to a change of
the length unit. Indicating by w the Weyl rescaling parameter, in 4
dimension we have that the various fields transform as

(gµν , H, ψα, Aµ ) =
(

w−2g′µν , wH
′, w3/2ψ′

α, A
′
µ

)

. (2.24)

Indicating collectively the fields with Φ and the rescaled ones with Φ′ a
generally covariant action S satisfies the relation

S(Φ,m) = S(Φ′,
m

w
). (2.25)

One can easily check this result by considering the free scalar Lagrangian

√
g
(

gµν∂µH∂νH −m2H2
)

(2.26)

In the case of the matter contribution in eq. (2.23) we make a rescaling
with w = eσ(π) such that gπµν = w−2ḡµν , H = wH ′, . . . and write it as

√
ḡLπ(ḡµν ,H

′, ψ′
α, A

′
µ,me

−σ(π)). (2.27)

In these new variables it is evident that all mass parameters in the
matter Lagrangian are redshifted with respect to the Planck mass M4 ≃
√

M3
5 /k. Now the importance of the RS mechanism has become very

concrete. We stress once again that the basic reason for this result is that
the 4-dimensional Planck mass is dominated by a contribution from the
region of low red shift, while the SM lives deep inside a region of high red
shift. As a matter of fact the metric ḡµν that appears in the 4D Einstein
term coincides with the induced metric on the Planck brane g0µν . We
will later explain that all these facts corresponds to the localization of
the 4D graviton near the Planck brane.

We want to emphasize that eq. (2.25) implies that only ratios of mass
parameters are observable in a theory of gravity, since their overall nor-
malization can be trivially changed by a field redefinition. This is the
same situation we have in the SM, where all CP violating phases, but one,
transform under field redefinitions and can thus be eliminated. Only the
ratio of Planck and weak scales, the hierarchy, is an obervable. Then we
can have an alternative view point of our result, where the original scale
in the Lagrangian is the weak scale and the Planck mass is a blue shifted
derived scale. Consider indeed a rescaling with w = eσ(π) on our original
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Lagrangian and on our original solution. Now all mass parameters in the
starting Lagrangian are of order TeV; for instance M5 → M ′

5 = M5/w.
Moreover the warp factor is 1 at y = π and eσ(π) at y = 0. The 4D
Planck mass is now written as

M2
4 =

(M ′
5)

3

k′

(

e2k′r′cπ − 1
)

. (2.28)

This picture makes more evident that the the hierarchy is generated
by a “dilution” mechanism, like in the ADD scenario. In eq. (2.28),
M2

4 comes out large because of the exponential growth of the “volume”
towards the Planck brane.

After the derivation of the effective Lagrangian we can better under-
stand the meaning of the tunings imposed on the boundary tensions. As
we will show below, the KK spectrum is quantized in units of the radion
VEV 〈µ〉. For E ≪ 〈µ〉 the system can be described by the zero modes
ḡµν and µ. Now, if we add to the brane tensions a perturbation which
is small enough not to excite the KK modes we should be able to accu-
rately describe its effects just in terms of the zero modes. Consider then
the following perturbations of the tensions parametrized by α, β ≪ 1

τ0 = 24M3
5 k (1 + α) τπ = −24M3

5 k (1 − β) . (2.29)

At lowest order, the correction to the effective Lagrangian is simply
obtained by substituting eq. (2.17) in the terms proportional to α and
β in the the original Lagrangian

∆Leff
4 = −24

(

M5

k

)3 √
g
(

αk4 + βµ4
)

. (2.30)

By integrating out the massive KK there arise extra corrections that
have either derivatives in them or are of higher order in α, β. The above
equation represents the leading correction to the potential. It is evident
that the two tunings of the brane tensions, α = β = 0, correspond to

1 vanishing radion potential

2 vanishing 4-dimensional cosmological constant.

Now, the second requirement is truly necessary since the the cosmologi-
cal constant is experimentally extremely small Λ4

4
<∼ (10−3eV)4. On the

other hand, by the first requirement the radion is a massless Brans-Dicke
field leading to a new unacceptable long range force. The first tuning
is not only useless but experimentally ruled out. The basic RS model
must be modified in order to give a mass to the radion while retaining
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the possibility to fine tune the 4D cosmological contant to zero. In the
modified theory there would remain just one tuning.

One can ask if a modifcation of the brane tensions can lead to a real-
istic radion stabilization. Of course we already know from the derivation
of the RS solution that with detuned tensions we would not be able to
find a static solution which is also flat from the 4D viewpoint. But it
is useful to study this more quantitatively. Notice that β gives rise to a
simple quartic potential for µ, so it would seem that the only stationary
point is µ = 0, which is not interesting. The situation is however slightly
more subtle since µ mixes kinetically with the graviton. In order to eas-
ily read the dynamics of µ it is useful to perform a Weyl rescaling of the
metric

ḡµν → ḡµν

1 − µ2

k2

(2.31)

to go in the Einstein frame in which the gravitational kinetic term is
exactly 2(M3

5 /k)
√
ḡR(ḡ) with no radion contribution. At the same time

the radion kinetic term receives a negligibly small modification, while
the potential term becomes

∆V = −∆Leff
4 = 24

(

M

k

)3 √
g
αk4 + βµ4

(1 − µ2

k2 )2
. (2.32)

This potential is stationary at (µ2/k2) = −α/β. One can easily check
that this stationary point corresponds to a minimum only for α < 0,
β > 0. Around the stationary point, V is negative so that the 4D
metric in turn will be AdS4. It turns out that both the AdS4 curvature
k4 and the radion mass mµ scale in the same way k2

4 ∼ m2
µ ∼ −αk2.

Then this solution does not look even approximately like the real world,
and a more realistic mechanism of radius stabilization is needed. Before
concluding this section we would like to notice that our simple discussion
captures and explains in a physically intuitive way the results of refs.
[38, 39], where the full 5D equations of motion in the presence of detuned
brane tensions were studied. Our approach also clarifies the results of
early studies of RS cosmology [40, 41], where a puzzling tuning ρ0 =
−ρπ(µ/k)2 between the energy momentum densities at the two different
branes was found to be needed. In our particular set up we have ρ0 ≡ k4α
and ρπ ≡ k4β, showing that the tuning is just the radion stationarity
condition in the absence of extra contributions to the potential [42].
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2.3 Radius stabilization: Goldberger-Wise
mechanism

As we have already remarked, in the RS model the hierarchy between
mass scales at the two boundaries depends exponentially on the proper
distance πrc between them. A moderate separation πrc/L ∼ 40 between
the proper length and the AdS length of the 5th dimension is then
enough to obtain a huge hierarchy. This would seem a natural way to
explain the hierarchy. The implicit assumption behind this conclusion is
that rc is the natural dynamical variable to describe the stabilization of
the 5th dimension, i.e. the radion potential is practically a polynomial
in rc. However we have so far no solid reason to believe this is the case.
As a matter of fact, in the simple example at the end of the previous
section, the natural variable was the warp factor µ/k itself. Now, instead
of the proper distance, an observer at the Planck brane could decide to
define her/his distance to the TeV brane through the time T a light
signal (or a graviton!) takes to travel to the TeV brane and back. The
result would be

T = 2

∫ π

0

dy√
g00

=
2

k

(

ekrcπ − 1
)

∼ 2

µ
(2.33)

which is exponentially large as a consequence of time dilation near the
TeV brane. According to this perfectly acceptable definition, the size of
the extra dimension is controlled by the weak scale µ itself. Notice that
the potential of the previous section is polynomial in µ. Such hugely
different notions for the size of the 5th dimension arise because the
global features of the RS space are controlled by curvature. We could
have started with a coordinate system in which, according to the above
definition of distance, the 5th coordinate is parametrized by

z =
e−krcy

k
. (2.34)

The metric would then have been

ds2 =
L2

z2

(

ηµνdx
µdxν + dz2

)

. (2.35)

where L = 1/k, the AdS radius, represents the AdS curvature length.
In these “conformal” coordinates there is no exponential factor, but the
locations of the Planck and TeV branes, respectively z0 and z1, are very
far apart

z0 = L≪ Lekrcπ = z1 (2.36)

In these new coordinates the radion field is simply associated to the
position of the second brane: µ(x) = 1/z1(x).
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To solve the hierarchy problem we must then find a mechanims that
stabilizes the second brane at z1 ∼ 1/TeV ≫ z0 ∼ 1/MP . In order to
do so, Goldberger and Wise (GW) [35] have proposed a simple model
involving a 5D scalar field φ with action

Sφ =

∫

d4xdz
{√

g[−(∂φ)2 −m2φ2]+δ(z − z0)
√
g0L0(φ) (2.37)

+ δ(z − z1)
√
g1L1(φ)}

It is assumed that the dynamics of the boundary terms L0,1 is such as
to fix the values φ(z0) = ṽ0 and φ(z1) = ṽ1. For instance, one can take
L0,1 = −λ0,1(φ− v0,1)

2 with λ0,1 → ∞. The assumption of an infinitely
steep boundary potential simplifies the computations but is not essential
[35, 36]. In the vacuum, the field φ will have a non-trivial bulk profile
satisfying the 5D Klein-Gordon equation and interpolating between the
two boundary values v0 and v1. The energy associated to this profile
depends on the distance between the two branes, corresponding to a
non-vanishing radion potential. Now, solving the coupled equations of
motion of gravity plus φ exactly is in general difficult. To make our task
easier we can make the simplifying assumption that φ only induces a
small perturbation of the locally AdS5 Randall-Sundrum metric. Quan-
titatively this is equivalent to requiring the scalar energy momentum to
be a small perturbation of the 5D cosmological constant

T φ
MN ∼ (∂zφ)2+m2φ2 ∼ max(v2

0 , v
2
1)×max(k2,m2) ≪ T vacuum

MN ∼M3
5k

2.
(2.38)

Since, in order to generate a big hierarchy we will need m2 <∼ k2, the
above relation simply implies

v2
0,1 ≪M3

5 (2.39)

(notice that a scalar field in 5D has mass dimension 3/2). When this con-
dition holds, φ is determined at leading order by solving the φ equations
of motion over the unperturbed RS background with Dirichlet boundary
conditions φ(z0) = v0 and φ(z1) = v1. Because of this second constraint,
there are no massless zero modes in the KK tower of φ. As long as the
φ profile is a small perturbation of RS the only light states are those of
the unperturbed model: the 4D graviton and the radion. In this respect
the procedure of solving the φ equations of motion and calculating the
action on the solution corresponds to integrating out the tower of mas-
sive φ KK modes to obtain an effective Lagrangian for the light modes
ḡ and µ. This is what we will now do. For a field configuration that
does not depend on the 4D coordinates the 5D Klein-Gordon equation
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becomes
z5

L2
∂z

1

z3
∂zφ = m2φ (2.40)

and the most general solution is

φ = Az4+ǫ +Bz−ǫ ǫ =
√

4 +m2L2 − 2 ≃ m2L2

4
. (2.41)

where we are emphasizing that we will be momentarily interested in the
limit ǫ ∼ m2L2/4 ≪ 1. The boundary conditions fix

A = zǫ
0

v0 − v1(z0/z1)
4+ǫ

1 − (z0/z1)4+2ǫ
B = z−4−ǫ

1

v1 − v0(z0/z1)
ǫ

1 − (z0/z1)4+2ǫ
(2.42)

and eq. (2.37) evaluated on the solution yields an effective potential for
the radion µ

V (µ) =
1

1 − (µL)4+ǫ

[

(4 + ǫ)µ4(v̄1 − v̄0(µL)ǫ)2 (2.43)

+ ǫL−4(v̄0 − v̄1(µL)4+ǫ)2
]

= L−4F (µL)

where we have made the substitutions z0 = L, z1 = 1/µ and where
v̄0,1 = L3/2v0,1 are the boundary VEVs in units of the AdS curvature.
For µL≪ 1 the potential becomes

V = ǫv̄2
0L

−4 +
[

(4 + 2ǫ)µ4(v̄1 − v̄0(µ/µ0)
ǫ)2 − ǫv̄2

1µ
4
]

+O(µ8L4) (2.44)

which for ǫ > 0 is minimized at

µL ≃
(

v̄1
v̄0

)
1
ǫ

. (2.45)

The hierarchy 〈µ〉L ∼ MW/MP = 10−17 can be naturally obtained for
fundamental parameters not much smaller than one (ex. v̄1/v̄0 ∼ 1/10
and ǫ ∼ 1/20). The hierarchy naturally arises because of the non-
analytic dependence of eq. (2.45) on ǫ . Some comments are now in
order.

1 Notice that the relevant part of the potential (the term in square
brackets in eq. (2.44)) has the form µ4P (µǫ). This is basically a
quartic potential modulated by a slow evolution of the effective
coupling λ ≡ P (µǫ). Notice indeed that for ǫ ≪ 1 one has µǫ ∼
1+ǫ lnµ+ . . ., so that the dependence on µ is reminiscent of a slow
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RG evolution. Stability of the potential at large µ corresponds to
limµ→∞ P (µ) > 0. Because of the slow evolution of P , a minimum
of the potential will exist very close to the point where P crosses
zero to become negative, see eqs. (2.44,2.45). These properties are
in full analogy with the Coleman-Weinberg (CW) [37] mechanism
of dimensional transmutation. There, quantum corrections to the
effective potential cause the quartic coupling to turn negative at
some scale. Since this happens through the slow logarithmic RG
evolution, broadly different mass scales can arise, making the CW
mechanism very interesting to explain the weak to Planck scale
hierarchy. It seems that the GW mechanism works qualitatively
in the same way.

2 Expanding at second order around the minimum and using the
unperturbed kinetic Lagrangian we find the radion mass

m2
µ ≃ 2

3
v̄2
1ǫ

3/2〈µ〉2 ≪ 〈µ〉2 (2.46)

indicating that in the model at hand the radion is much lighter
than the other KK resonances and potentially more interesting for
collider phenomenology.

3 The potential at the minimum is dominated by the fist term in
eq. (2.44): Vmin ≃ ǫv̄2

0L
−4 ∼ M4

4 , far too large! However we can
now go back and slightly modify the brane tensions as we did in
the previous section. For small α and β, at leading order this
amounts to adding the contribution in eq. (2.30) to eq. (2.44).
Around the minimum of the GW potential µ is massive so that
β 6= 0 causes only a small shift in 〈µ〉. We no longer need to
tune β = 0 after the radius is stabilized. Moreover both α and
β cause a shift in the potential at the minimum. By properly
choosing one combination of them we can cancel the potential at
the minimum. This is of course a fine tuning, but it is just the
cosmological constant problem, which we never promised to solve.
After radius stabilization the only fine tuning left in the model is
the one associated to the vanishing cosmological constant.

4 The minimal GW potential gives rise to a stable minimum only
for ǫ ≃ m2L/4 > 0. However one could also obtain stable minima
for ǫ < 0 for a proper range of the detuning parameter β.

Concerning the last remark one may worry that ǫ ∼ m2 < 0 will
lead to instabilities in the bulk. If |m2| is small enough, however, no
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instability arises. Concerning this result it is instructive to consider the
following exercises.

Show that no instability is generated for m2 > −4k2 + (small)
(hint: study the KK spectrum for the excitation ∆φ around the
GW background remembering that ∆φ = 0 at the boundaries).

Study the same problem with a flat 5th dimension.

2.4 Kaluza-Klein spectrum

In this section we shall study the KK spectrum of the gravitational
field. As for the flat case we studied earlier, it is convenient to use the
5D gauge freedom to eliminate as many degrees of freedom from gµ5 and
g55 as possible. It is then easy to check (for instance by working at the
linearized level) that without loss of generality we can use the following
parametrization

ds2 = e−2k|y|rc−2f(x)e2k|y|rc
(ĝµν(x, y)dxµdxν) +

(

1 + 2f(x)e2k|y|rc

)2
dy2

(2.47)
Because of the orbifold projection we can consistently set gµ5 ≡ 0. On
the other hand for g55 we can eliminate all the modes but one, the
radion. This one mode remaining in g55 can however be parametrized
at our convenience, and the choice in eq. (2.47) as an advantage that we
will now explain. Since we are mostly interested in the J = 2 modes,
consider first substituting eq. (2.47) with f(x) = 0 in the RS action.
After changing the 5th coordinate to z = Le−k|y|rc, one finds

S(g) = 4M3
5L

3
∫ z1

L

√

ĝ
dz

z3

[

R4(ĝ) +
1

4

(

(∂z ĝ
µν)(∂z ĝµν) + (ĝµν∂z ĝµν)2

)]

.

(2.48)
Notice that all terms with no derivative acting on ĝµν(x, y(z)) have ju-
diciously cancelled out when expanding around the RS solution. We
already know that it should have been this way: any constant ĝµν solves
the equations of motion, so that the action for ĝµν must involve only
gradient terms. When f 6= 0 we find an extra contribution to be added
to eq. (2.48) and starting at quadratic order in f

∆S = −12
M3

5

L

(

z2
1 − L2

)

∂µf∂
µf +O(f3, f2hµν , . . .) (2.49)

where hµν = ĝµν −ηµν . Notice that there is no kinetic mixing between f
and the metric hµν . In other words, the graviton is automatically in the
Einstein frame. This is because of our specific parametrization of the
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scalar mode in eq. (2.47). This should be contrasted to the parametriza-
tion in eq. (2.17) which lead to a small O(µ2L2) mixing between radion
and graviton. Anyway, neglecting O(µL), terms and with the identifica-
tion (cfr. eqs. (2.17,2.19))

µ(x) = ke−kπrc−f(x)e2kπrc
= ke−σ(π,x) (2.50)

eq. (2.49) reproduces the radion kinetic term of eq. (2.18).
Let us now focus on the J = 2 modes. Expanding eq. (2.48) at

quadratic order in hµν = ĝµν − ηµν we find

M3
5L

3
∫ z1

L

dz

z3

(

hµνK
µνρσhρσ − hµν∂2

zhµν + hµ
µ∂

2
zh

ν
ν

)

(2.51)

where Kµνρσ is the 4-dimensional J = 2 kinetic operator shown in the
first line of eq. (1.39). Notice that the mass operator has the Fierz-Pauli
form. From eq. (2.51) the equation for the eigenmodes ψn(z) is then
simply

−z3∂z
1

z3
∂ψn(z) = m2

nψn(z) (2.52)

with boundary conditions

∂zψn|z=L = ∂zψn|z=z1 = 0, (2.53)

as hµν is even under the orbifold parity and its action does not contain
boundary terms.

For mn 6= 0 the general solution to eq. (2.52) is written in terms of
Bessel functions

ψn(z) =
z2

L2
[J2(mnz) + bnY2(zmn)] (2.54)

and the boundary conditions enforced by using the identity

∂zψn ∝ z2 [J1(mnz) + bnY1(zmn)] . (2.55)

We then find

bn =
J1(mnL)

Y1(mnL)
(2.56)

while the eigenvalue equation is simply

J1(mnL)Y1(mnz1) − Y1(mnL)J1(mnz1) = 0. (2.57)

In order to focus on the phenomenologically interesting “light” modes,
satisfying mnL ≪ 1, we need the asymptotic behaviour of the Bessel
functions

x≪ 1 →
{

J2(x) = x2

8 +O(x4)
Y2(x) = − 4

πx2 − 1
π +O(x2)
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x≫ 1 →







J2(x) =
√

2
πx cos(x− 5

4π)

Y2(x) = −
√

2
πx sin(x− 5

4π)
.

(2.58)

In the limit mnL≪ 1 eqs. (2.56) and (2.57) reduce respectively to

bn ≃ (mnL)2π/4 ≪ 1 (2.59)

and
J1(mnz1) = 0 (2.60)

The solutions to the last equation are quantized in units of 1/z1 ≡ 〈µ〉

mn = cn
1

z1
≃ (n+

1

4
)
π

z1
, (2.61)

where the last identity is valid asymptotically for n≫ 1 (cfr. eq. (2.58))
but works very well already for n = 1: c1 ≃ 1.21π. Notice that because
bn ≪ 1, Y2 makes a negligible contribution to ψn in the region mnz ≫
1 where ψn oscillates. In the region zmn ≪ 1, the Y2 contribution
is relatively important (in fact dominant), but this region contributes
negligibly to the normalization of the eigenfunctions.

Indeed, by eq. (2.51) the norm of the modes is

||ψn||2 =

∫ z1

z0=L

2zdz

L2
[J2(mnz) + bnY2(mnz)]

2 ≃
∫ z1

0

zdz

L2
[J2(mnz)]

2

=

(

z1
L

)2

J2(mnz1)
2. (2.62)

Neglecting contributions of relative size O(L2/z2
1) ∼ m2

weak/M
2
P , we have

approximated ||ψn|| by its value in the limit z0 = 0, in which the Planck
brane has an infinite proper distance from the TeV brane (and an in-
finite relative blueshift, see eq. (2.35)). ||ψn|| is dominated by the re-
gion 1/mn < z < z1, where the Bessel functions have an oscillatory
behaviour. A mode with mass mn is not very sensitive to the region
z < 1/mn. In particular the modes remain normalizable and the spec-
trum discrete even for z0 → 0. Notice finally that the orthonormal
modes ψ̂n(z) ≡ ψn(z)/||ψn|| satisfy ψ̂n(z1) = sgn(J2(mnz1))z1/L, so
that all modes couple with equal strength to the fields on the SM brane.

The massless mode, see eq. (2.52), simply corresponds to a constant
ψ0 = 1 with norm

||ψ0|| = L2
∫ z1

z0=L

2dz

z3
=

(

1

L2
− 1

z2
1

)

(2.63)
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which is dominated at small z. Unlike the massive modes, ψ0 is local-
ized at the Planck brane: ||ψ0|| diverges for z0 → 0 but remains finite
for z1 → ∞. From eq. (2.48) we have that the 4D Planck mass is
M2

4 = M3
5L

3||ψ0||2 = M3
5L[1− (L/z1)

2], which is the result we obtained
previously. Notice also that for z0 → 0 the 4D Planck mass diverges,
corresponding to the zero mode graviton being localized infinitely far
away from the TeV brane.

Using the above results, but working with the canonically normalized

KK gravitons h̄
(n)
µν and radion f̄ the coupling to the TeV brane energy

momentum tensor is written as

Lint = −1

2







h̄
(0)
µν

M4
+
∑

n≥1

h̄
(n)
µν

Λ







T µν +
f̄√
24Λ

T µ
µ (2.64)

where Λ ≡ (M5L)3/2/z1. Eq. (2.64) is the basic equation to study the
collider implications of the RS model [43]. The interactions and spec-
trum of the J = 2 modes are fully described by two parameters, Λ and
〈µ〉 = 1/z1. For radion phenomenology two extra parameters are needed,
one is the radion mass, which depends on the stabilization mechanism,
the other is a radion-Higgs mixing parameter ξ [24]. Basically the param-
eter ξ accounts for the fact that the energy momentum tensor for a scalar
H is defined up to an “improvement term” ∆Tµν = ξ(∂µ∂ν − ηµν∂

2)H2.
A non zero ξ induces a kinetic mixing between radion and Higgs after
electroweak symmetry breaking.

A little exercise one can do with the interaction Lagrangian in eq. (2.64)
concerns the validity of perturbation theory. A simple quantity to cal-
culate (estimate) is the decay width into SM particles (living at the TeV
boundary). For the n-th mode we find

Γ(n) ∼
m3

n

8πΛ2
. (2.65)

Notice that Γ(n) grows with n, so that for n large enough the nearby
resonances will start overlapping. When this takes place, by definition,
perturbation theory breaks down: quantum corrections to the spectrum
(the widths) make the very concept of individual KK resonances useless.
Using the above equations we find that Γ(n) < mn+1 − mn is satisfied
for masses below

mn < M5
L

z1
. (2.66)

This shows that the UV cut-off for physics at the TeV scale is just the
redshifted Planck mass. Of course by starting off in the primed Weyl
frame, discussed above eq. (2.28), this is the obvious result.
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2.5 Strong coupling puzzle

At the end of the previous section we have shown by a simple argument
that the RS model becomes strongly coupled at a fairly low scale M ′

5 =
M5L/z1. If we we want to explain the hierarchy by the ratio L/z1, then
M ′

5 ∼TeV very much like in the ADD scenario. Although such a low-
cut off limits predictivity, as long as M ′

5 is somewhat bigger than the
mass of the lightest KK, some control is retained: roughly a number of
modes ∼ M ′

5z1 = M5L remains weakly coupled. From the conceptual
viewpoint, however, the presence of this low cut-off can be confusing,
when not properly interpreted. One basic puzzle is that M ′

5 depends
on the location of the TeV brane. Moreover as z1 → ∞ and half of
AdS5 is recovered, M ′

5 goes to zero, as if there was no energy range
where gravity on AdS makes sense as an effective field theory. The
origin of this puzzle is that we are working on a curved space where
particle propagation involves large or possibly infinite momentum blue-
shift. As we will explain, since the puzzle arises when considering the
global aspect of our spacetime, a proper resolution cannot do without
accounting for the locality of the interactions.

It is instructive to go back and consider the motion of a particle in
AdS space. The equations for the geodetic in conformal coordinates are

ẍµ − 2
ẋµż

z
= 0 z̈ − ż2

z
+
ẋµẋνηµν

z
= 0 (2.67)

where by the dot we indicate the derivative with respect to the affine
parameter λ. Let us focus on the massless case. As λ is arbitrary, we can
choose it such that dxM/dλ coincides with the 5-momentum PM . By
this choice we have, in particular, d/dλ = P 5d/dz and by using the zero
mass condition PMPNgMN = 0 we can write eq. (2.67) and its solution
as

z
dPM

dz
= 2PM → PM =

(

z2

L2

)

P̄M . (2.68)

This is the momentum in the AdS coordinates, but a more physical quan-
tity is the momentum PM

phys seen in the frame of a free falling observer at

rest at z: PM
phys = PM (L/z) = P̄M (z/L). Viewing the particle as a wave,

the increase in momentum is simply due to the homogeneous contraction
L/z of all lengths when moving down the AdS throat, see Fig. (9). Mov-
ing to larger z is like going backward in time in Friedmann-Robertson-
Walker (FRW) cosmology. This analogy is not accidental as both AdS
and FRW have conformally flat metrics. Now, consider two particles
starting with momenta P̄M

1 and P̄M
2 at the Planck brane. If they collide

after falling at a bulk position z, the center of mass energy of the collision
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will be s(z) = −2PM
1 PN

2 gMN = −2P̄M
1 P̄N

2 ηMN (z/L)2 = s(0)(z/L)2.
Then by starting by a sub-Planckian energy

√
s(0) < M5 we can pro-

duce super-Planckian collisions if z is large enough. Of course this also
means that a Planck brane observer must wait a relatively long time
T > z in order to oberve this collision. In a moment we will see that
this time delay is the central point to discuss “strong coupling” at the
quantum level. Notice also that in the case of the compact RS model z
is bounded by z1, so that for

√

s(0) < M5L/z1 the Planck mass is never
exceeded in the bulk. Once again we have found that the critical energy
corresponds to the redshifted Planck mass M ′

5.
Consider now the limit z1 → ∞. At z = ∞ the metric of 4D slices van-

ishes, similarly to what happens to g00 in the Schwarzschild solution in
GR. Also, at the point z = ∞ there is a horizon, the AdS horizon. In fact
a particle falling from the Planck brane takes an infinite Planck brane
time to reach z = ∞, but the proper time experienced by the particle is
finite τ = πL/2. This is completely analogous to the Schwarzschild case.
The model so defined is named RSII [44], so that the model with two
branes we have considered so far is named RSI. If we assume that the
SM is instead localized at the Planck brane (and thus give up explaining
the hierarchy by redshifts) the RSII model represents an “alternative
to compactification”. This is because, although the 5th dimension is
non-compact, there is still a normalizable 4-dimensional graviton, see
eq. (2.63), dominating the IR behaviour of gravity. Eq. (2.63) should be
contrasted to the flat case, in which ||ψ0|| grows with the radius R, so
that the zero mode decouples in the infinite volume limit.

The RSII model seems a very interesting way to view 4D gravity. In
this model however a particle falling from the Planck brane can undergo
virtually infinite Redshift before colliding. Then if we blindly applied
the above definition of UV cut-off we would conclude that RSII is not a
viable effective field theory! And we would be wrong. The point is that
the notion of “which energy is Planckian” must be a local one. As we
have already stated, a Planck brane observer, while working with initial
states that have

√
s≪M5, must set up an experiment that probes deep

into the 5D bulk in order to see quantum gravity effects. An instructive
way to understand how things work is to consider a scattering process
induced by graviton exchange among particles localized on the Planck
brane. Consider first a t−channel process at fixed angle, for which the
exchanged graviton has virtuality Q =

√
−t ∼ √

s. A particle with
virtuality Q can exist only for a time ∼ 1/Q, so that by causality it
probes the bulk no further than zQ ∼ 1/Q. The virtual momentum is
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Figure 10. Amplitude for the scattering
of fermions localized on the Planck brane
via t-channel 5D graviton exchange.

Figure 11. Leading quantum gravity cor-
rection to the process of Fig. (10) .

then only blueshifted to

Q(z) = Q
z

L
<∼ Q

zQ
L

∼ 1

L
(2.69)

so that perturbativity of the process is maintained as long as 1/L≪M5.
But this was our original requirement in order to trust the RS solu-
tion. By the above simple argument we expect the leading gravitational
loop corrections to the above process to be controlled by Q(zQ)/M5 =
1/(M5L) independent of the scale of the kinematical parameters s and
t = Q2. This result is remarkable: the leading gravitational corrections
are scale invariant. This does not happen by chance and is related to
the possibility to interpret the RSI and RSII models according to the
AdS/CFT correspondence [46, 47, 36]. As shown in Fig. (11), we can
make our arguments slightly more concrete by considering the 1-loop
correction to our t−channel process. The crucial remark [47] is that the
brane to bulk propagator (working in momentum space along the brane
and in position space along the 5th dimension) behaves like

G(z = z0, z
′, Q) ∝ e−Q(z′−z0) (2.70)

while the local loop expansion parameter is [Q(z′)]3/M3
5 . Taking the

brane to bulk propagator into account, the 1-loop correction diagram
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will be of order

e−Q(z′−L)
(

Qz′

M5L

)3

<
1

(M5L)3
(2.71)

consistent with our previous result. Notice that both the above inequal-
ity and the previous argument apply only for Q < 1/L. When Q > 1/L
curvature is unimportant (the relevant length scale 1/Q is short) so that
the loop expansion parameter is just that of flat space ∼ Q3/M3

5 . We
conclude that a Planck brane observer studying t-channel graviton ex-
change sees quantum gravity becoming important at the most obvious
scale: M5. By the same argument, we would also deduce that an ob-
server sitting on a probe brane at position z sees gravity becoming strong
at a local scale M5(z) = M5z/L.

The situation for s-channel processes is somewhat different. Here with
enough energy resolution one could produce, even on the Planck brane,
individual KK-modes and measure their widths, being thus able to de-
cide whether there is strong dynamics. The required energy resolution
∆E <∼ 1/z1, corresponds, by the indetermination principle, to a time
scale T > z1 during which a signal can travel from the Planck to TeV
brane. To be more definite consider the annihilation process λλ̄ → χχ̄
for fermions living on the Planck brane. The s−channel amplitude is

A(s) =
1

4
T µν(in)T ρσ(out)〈hµνhρσ〉

=
1

4
T µν(in)T ρσ(out)

∑

n

|ψ̂(n)(z = L)|2
M3

5L

Πµνρσ(mn)(s)

s−m2
n + imnΓn

(2.72)

where Π(mn) is the J = 2 projection operator defined in eq. (1.43) and
where for simplicity we have neglected the radion contribution. The
wave function at the Planck brane is |ψ̂(n)(z = L)|2 ∼ mn(L2/z1) for

the massive modes, but for the zero mode we have |ψ̂(0)(z = L)|2 ∼ 1.
The lighter massive modes, being localized away from the Planck brane,
couple much more weakly than the zero mode. In this respect, the
production of these modes is very suppressed. However even with this
tiny coupling one could in principle study the production of individual
resonances and measure their width. In fact we do not want to stress
to much the wave function suppression, as it is a specific feature of the
graviton KK. For instance, in the case of a bulk vector this suppression
is practically absent [45]. The point we want to stress here concerns
instead the energy resolution of the experiment. In order to proceed we
need the explicit expression of the brane to brane propagator as a sum
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over massive KK , 4D graviton and radion contributions

M3
5 〈hµνhρσ〉 = A(s)Πm6=0

µνρσ +
z2
1

z2
1 − L2

Πm=0
µνρσ

sL
+

L2

z2
1 − L2

ηµνηρσ

6sL
(2.73)

where

Πm6=0
µνρσ =

1

2
(ηµρησν + ηµσηρν) − 1

3
ηµνηρσ (2.74)

is the massive spin 2 projector of eq. (1.43) after eliminating the ir-
relevant longitudinal parts, while Πm=0

µνρσ is the massless projector given
in eq. (1.46). Notice that the radion contribution, the third term, is
suppressed by a power L2/z2

1 . The massive KK amplitude is

A(s) =

{

1

2
√
s

Y1(
√
sz1)J2(

√
sL) − J1(

√
sz1)Y2(

√
sL)

Y1(
√
sz1)J1(

√
sL) − J1(

√
sz1)Y1(

√
sL)

− 1

sL

z2
1

z2
1 − L2

}

≡ F (s)

2
√
s
− 1

sL

z2
1

z2
1 − L2

. (2.75)

Notice that A(s), and F (s) have poles on the real positive axis in corre-
spondence with the massive KK masses. However A(s) does not have a
pole at s = 0, while F (s) does. For large z1, on the positive real s axis
A(s) is a complicated oscillating function with narrowly spaced poles.
However when s is continued into the complex plane all this structure
gives way to the much simpler euclidean behaviour. By giving

√
s a pos-

itive finite imaginary part
√
s ≡ qR + iqI and by using the asymptotic

expansion for Bessel functions we find

F (s) =
J2(

√
sL) + iY2(

√
sL)

J1(
√
sL) + iY1(

√
sL)

(

1 +O(e−2qIz1)
)

=
H

(1)
2 (

√
sL)

H
(1)
1 (

√
sL)

(

1 +O(e−2qIz1)
)

(2.76)

where we employed the definition of the Hankel functions. Substituting
this result into eq. (2.75) we find, up to O(e−2qIz1) terms

〈hµνhρσ〉(
√
s = qR + iqI) = − H

(1)
2 (

√
sL)

2
√
sH

(1)
1 (

√
sL)

Πm6=0
µνρσ − ηµνηρσ

6sL
. (2.77)

The important point about this result is that all the dependence on pow-
ers of z1 has disappeared. Now, the point is that if we use initial states
that have an energy spread (∆s)/

√
s >> 1/z1 (i.e. smearing this ampli-

tude with a wave function spread over ∆s) is practically equivalent to
considering the amplitude at a complex point with Im(

√
s) ∼ i∆s/

√
s.



Cargese lectures on extra-dimensions 55

For such spread states all the physics of the KK-modes, including their
detailed strong dynamics is exponentially suppressed, and thus practi-
cally inaccessible. This result is quite analogous to the well known exam-
ple of e+e− → hadrons. In that case, the behaviour of the cross section
as a function of the energy can be very complicated by the presence of
the resonances, indicating that a perturbative QCD computation is not
adequate. For instance this is the case near the bottom quark thresh-
old. However by averaging the cross section over ∆s/

√
s >> ΛQCD one

obtains an observable which can be reliably computed in perturbation
theory in terms of the production of quarks and gluons. This is the
so-called parton-hadron duality.

To conclude we want to apply eq. (2.77) in the fully euclidean region√
s = iq to compute the gravitational potential induced on the Planck

brane by a source on it. Notice that this is the exact propagator for
RSII, while for RSI it applies only for q > 1/z1. We are interested in the
long distance behaviour qL≪ 1, so we use the Bessel function expansion
at small argument.

We find

〈hµνhρσ〉(
√
s = +iq) =

1

M3
5L

{

Πm=0
µνρσ

q2
+ Πm6=0

µνρσ

L2

2
ln q2 +O(q2)

}

(2.78)
so that the Newtonian potential induced by a body of mass m is

V (r) =
GNm

r

(

1 +
2L2

3r2
+ . . .

)

. (2.79)

This formula applies in the long distance regime r ≫ L. A good exercise
is to check that at a distance r ≪ L, the potential goes back to the
5D behaviour V ∼ 1/r2. Then RSII can be a viable alternative to
compactification for L <∼ 100µm.
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