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Outline
Lecture #1:  An introduction to Bayesian statistical methods

      Role of probability in data analysis (Frequentist, Bayesian)

      A simple fitting problem : Frequentist vs. Bayesian solution

      Bayesian computation, Markov Chain Monte Carlo

      Setting limits / making a discovery

Lecture #2:  Multivariate methods for HEP

      Event selection as a statistical test

      Neyman-Pearson lemma and likelihood ratio test

      Some multivariate classifiers:

            Boosted Decision Trees

            Support Vector Machines
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A definition of probability 

Consider a set S with subsets A, B, ...

Kolmogorov
axioms (1933)

Also define conditional probability:
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Interpretation of probability
I.  Relative frequency

A, B, ... are outcomes of a repeatable experiment 

cf. quantum mechanics, particle scattering, radioactive decay...

II.  Subjective probability
A, B, ... are hypotheses (statements that are true or false) 

•   Both interpretations consistent with Kolmogorov axioms.
•   In particle physics  frequency interpretation often most useful,
    but subjective probability can provide more natural treatment of 
    non-repeatable phenomena:  
        systematic uncertainties, probability that Higgs boson exists,...
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Bayes’ theorem
From the definition of conditional probability we have

and

but , so

Bayes’ theorem

First published (posthumously) by the
Reverend Thomas Bayes (1702−1761)

An essay towards solving a problem in the
doctrine of chances, Philos. Trans. R. Soc. 53
(1763) 370; reprinted in Biometrika, 45 (1958) 293.
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Frequentist Statistics − general philosophy 
In frequentist statistics, probabilities are associated only with
the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), 
P (0.117 < s < 0.121), 

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under
the assumption of certain probabilities, about hypothetical
repeated observations.

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’.
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Bayesian Statistics − general philosophy 
In Bayesian statistics, interpretation of probability extended to
degree of belief (subjective probability).  Use this for hypotheses:

posterior probability, i.e., 
after seeing the data

prior probability, i.e.,
before seeing the data

probability of the data assuming 
hypothesis H (the likelihood)

normalization involves sum 
over all possible hypotheses

Bayesian methods can provide more natural treatment of  non-
repeatable phenomena:  
     systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)
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Example:  fitting a straight line

Data:

Model:  measured yi independent, Gaussian:

assume xi and i known.

Goal:  estimate 0 

(don’t care about 1).
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Correlation between

             causes errors

to increase.

Standard deviations from

tangent lines to contour

Frequentist approach
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The information on 1

improves accuracy of

Frequentist case with a measurement t1 of 1
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Bayesian method
We need to associate prior probabilities with 0 and 1, e.g.,

Putting this into Bayes’ theorem gives:

posterior                      likelihood                prior

← based on previous 
     measurement

reflects ‘prior ignorance’, in any
case much broader than
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Bayesian method (continued)

Usually need numerical methods (e.g. Markov Chain Monte
Carlo) to do integral.

We then integrate (marginalize)  p(0, 1 | x) to find p(0 | x):

In this example we can do the integral (rare).  We find
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Digression: marginalization with MCMC
Bayesian computations involve integrals like

often high dimensionality and impossible in closed form,
also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized
Bayesian computation.  

MCMC (e.g., Metropolis-Hastings algorithm) generates 
correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than naive √n .

Basic idea:  sample multidimensional 
look, e.g., only at distribution of parameters of interest. 
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Although numerical values of answer here same as in frequentist
case, interpretation is different (sometimes unimportant?)

Example:  posterior pdf from MCMC
Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of
interest with, e.g., mean, median,
standard deviation, etc.
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MCMC basics:  Metropolis-Hastings algorithm
Goal:  given an n-dimensional pdf 

generate a sequence of points 

1)  Start at some point 

2)  Generate  

Proposal density
e.g. Gaussian centred
about

3)  Form Hastings test ratio

4)  Generate

5)  If

else

move to proposed point

old point repeated

6)  Iterate
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Metropolis-Hastings (continued)
This rule produces a correlated sequence of points (note how 
each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical
errors larger than naive

The proposal density can be (almost) anything, but choose
so as to minimize autocorrelation.  Often take proposal
density symmetric:

Test ratio is (Metropolis-Hastings):

I.e. if the proposed step is to a point of higher           , take it;  

if not, only take the step with probability 

If proposed step rejected, hop in place.
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Metropolis-Hastings caveats
Actually one can only prove that the sequence of points follows
the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does
not initially follow

Unfortunately there are few useful theorems to tell us when the
sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try starting from a different
point and see if the result is similar.
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Bayesian method with alternative priors
Suppose we don’t have a previous measurement of 1 but rather, 
e.g., a theorist says it should be positive and not too much  greater
than 0.1 "or so", i.e., something like

From this we obtain (numerically) the posterior pdf for 0:

This summarizes all 
knowledge about 0.

Look also at result from 
variety of  priors.
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A more general fit (symbolic)
Given measurements: 

and (usually) covariances:

Predicted value:

control variable parameters bias

Often take:

Minimize

Equivalent to maximizing L() » e2/2, i.e., least squares same 
as maximum likelihood using a Gaussian likelihood function. 

expectation value
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Its Bayesian equivalent

and use Bayes’ theorem:

To get desired probability for , integrate (marginalize) over b:

→ Posterior is Gaussian with mode same as least squares estimator, 
same as from 2 = 2

min + 1.  (Back where we started!)

Take

Joint probability
for all parameters



G. Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis page 21

Alternative priors for systematic errors
Gaussian prior for the bias b often not realistic, especially if one
considers the "error on the error".  Incorporating this can give
a prior with longer tails:

b(
b)

Represents ‘error
on the error’; 
standard deviation 
of s(s) is s.

b
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A simple test
Suppose fit effectively averages four measurements.

Take sys = stat = 0.1, uncorrelated.

Case #1: data appear compatible Posterior p(|y):

Usually summarize posterior p(|y) 
with mode and standard deviation:

experiment
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
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)
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Simple test with inconsistent data
Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

Posterior p(|y):

experiment

m
ea
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re

m
en

t



p(

|y
)

(See also D'Agostini 1999; Dose & von der Linden 1999)
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Goodness-of-fit vs. size of error

In LS fit, value of minimized 2 does not affect size
of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics,
a high 2 corresponds to a larger error (and vice versa).

2000 repetitions of
experiment, s = 0.5,
here no actual bias.

po
st

er
io

r 



2

 from least squares
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The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ (), this 
reflects degree of belief about  before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(| x) to give interval with any desired
probability content.  

For e.g. Poisson parameter 95% CL upper limit from
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Analytic formulae for limits
There are a number of papers describing Bayesian limits
for a variety of standard scenarios

Several conventional priors
Systematics on efficiency, background
Combination of channels

and (semi-)analytic formulae and software are provided.

But for more general cases we need to use numerical methods 
(e.g. L.D. uses importance sampling).
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Example:  Poisson data with background

Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):

Sometimes b known, other times it is in some way uncertain.

Goal:  measure or place limits on s, taking into 
consideration the uncertainty in b.

Widely discussed in HEP community, see e.g. proceedings of
PHYSTAT meetings, Durham, Fermilab, CERN workshops...
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior (s) = 0 for s<0.

Often try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’). 

Otherwise Bayesian limit is
everywhere greater than
classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if n = 0.
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Upper limit versus b

b

If n = 0 observed, should upper limit depend on b?
Classical:  yes
Bayesian:  no
FC:  yes

Feldman & Cousins, PRD 57 (1998) 3873
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Coverage probability of confidence intervals
Because of discreteness of Poisson data, probability for interval
to include true value in general > confidence level (‘over-coverage’)
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Bayesian limits with uncertainty on b
Uncertainty on b goes into the prior, e.g.,

Put this into Bayes’ theorem,

Marginalize over b, then use p(s|n) to find intervals for s
with any desired probability content.

Controversial part here is prior for signal s(s) 
(treatment of nuisance parameters is easy).
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Discussion on limits 

Different sorts of limits answer different questions.  
A frequentist confidence interval does not (necessarily)
answer, “What do we believe the parameter’s value is?”

Coverage — nice, but crucial?

Look at sensitivity, e.g., E[sup | s = 0].

Consider also:
politics, need for consensus/conventions;
convenience and ability to combine results, ...

For any result, consumer will compute (mentally or otherwise):

Need likelihood (or summary thereof). consumer’s prior
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Frequentist discovery, p-values

To discover e.g. the Higgs, try to reject the background-only 
(null) hypothesis (H0).

Define a statistic t whose value reflects compatibility of data
with H0.

p-value = Prob(data with ≤ compatibility with H0 when 
             compared to the data we got | H0 )

For example, if high values of t mean less compatibility,

If p-value comes out small, then this is evidence against the 
background-only hypothesis → discovery made!
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Significance from p-value

Define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.

TMath::Prob

TMath::NormQuantile
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When to publish

HEP folklore is to claim discovery when p = 2.9  10,
corresponding to a significance Z = 5.

This is very subjective and really should depend on the 
prior probability of the phenomenon in question, e.g.,

         phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs ~ 10-7  (?)
Life on Mars ~10

Astrology 
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Bayesian model selection (‘discovery’)

no Higgs

Higgs

The probability of hypothesis H0 relative to its complementary
alternative H1 is often given by the posterior odds:

Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01
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Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to our 5 rule:

B10 Evidence against H0

--------------------------------------------
1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?
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Rewriting the Bayes factor

Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 
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Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over
all of the internal parameters of the models:

Use Bayes
theorem

So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 
likelihoods
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Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
...

See e.g. 
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Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

() is normalized to unity so integrate both sides,

Therefore sample  from the posterior via MCMC and estimate m 
with one over the average of 1/L (the harmonic mean of L).

posterior
expectation
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Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f():

Integrate over  :

Improved convergence if tails of f() fall off faster than L(x|)()

Note harmonic mean estimator is special case f() = ().
.
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Importance sampling

Need pdf f() which we can evaluate at arbitrary  and also
sample with MC.

The marginal likelihood can be written

Best convergence when f() approximates shape of L(x|)().

Use for f() e.g. multivariate Gaussian with mean and covariance
estimated from posterior (e.g. with MINUIT).
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Summary of lecture 1

The distinctive features of Bayesian statistics are:

       Subjective probability used for hypotheses (e.g. a parameter).

       Bayes' theorem relates the probability of data given H
       (the likelihood) to the posterior probability of H given data:

Requires prior 
probability for H

Bayesian methods often yield answers that are close (or identical)
to those of frequentist statistics, albeit with different interpretation.

This is not the case when the prior information is important
relative to that contained in the data.
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Extra slides 
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Some Bayesian references 
P. Gregory, Bayesian Logical Data Analysis for the Physical 
Sciences, CUP, 2005

D. Sivia, Data Analysis: a Bayesian Tutorial, OUP, 2006

S. Press, Subjective and Objective Bayesian Statistics:  Principles, 
Models and Applications, 2nd ed., Wiley, 2003

A. O’Hagan, Kendall’s, Advanced Theory of Statistics, Vol. 2B, 
Bayesian Inference, Arnold Publishers, 1994

A. Gelman et al., Bayesian Data Analysis, 2nd ed., CRC, 2004

W. Bolstad, Introduction to Bayesian Statistics, Wiley, 2004

E.T. Jaynes, Probability Theory:  the Logic of Science,  CUP, 2003
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Setting limits on Poisson parameter

Consider again the case of finding n = ns + nb events where

nb events from known processes (background)
ns events from a new process (signal)

are Poisson r.v.s with means s, b, and thus n = ns + nb

is also Poisson with mean = s + b.  Assume b is known.

Suppose we are searching for evidence of the signal process,
but the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs = 5 events.

→  set upper limit on the parameter s.

The evidence for the presence of signal events is not
statistically significant,
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Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small
probability, say,  = 0.05, to find as few events as we did or less:

Solve numerically for s = sup, this gives an upper limit on s at a

confidence level of 1.

Example:  suppose b = 0 and we find nobs = 0.  For 1 = 0.95,

→
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Calculating Poisson parameter limits

To solve for slo, sup, can exploit relation to 2 distribution:

Quantile of 2 distribution

For low fluctuation of n this 
can give negative result for sup; 
i.e. confidence interval is empty.
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Limits near a physical boundary
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 
physical boundary, cf. m estimated using E2  p2 . 
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Expected limit for s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10!

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?

Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44
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The Bayesian approach

In Bayesian statistics need to start with ‘prior pdf’ (), this 
reflects degree of belief about  before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:

Integrate posterior pdf  p(| x) to give interval with any desired
probability content.  

For e.g. Poisson parameter 95% CL upper limit from
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Bayesian prior for Poisson parameter

Include knowledge that s ≥0 by setting prior (s) = 0 for s<0.

Often try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 
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Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’). 

Otherwise Bayesian limit is
everywhere greater than
classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if n = 0.
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Likelihood ratio limits (Feldman-Cousins)
Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

       Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

       (Re)discovered for HEP by Feldman and Cousins, 
       Phys. Rev. D 57 (1998) 3873.
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More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find  n >> b.
Usually one then quotes a measurement:

If, however, n isn’t large enough to claim discovery, one
sets a limit on s.

FC pointed out that if this decision is made based on n, then
the actual coverage probability of the interval can be less than
the stated confidence level (‘flip-flopping’).

FC intervals remove this, providing a smooth transition from
1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 
p-value of s=0 still substantial.  Part of upper-limit ‘wasted’?


