Topics in Statistical Data Analysis for HEP
Lecture 1: Bayesian Methods

CERN-JINR European School of High Energy Physics
Bautzen, 14–27 June 2009

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk
www.pp.rhul.ac.uk/~cowan
Outline

Lecture #1: An introduction to Bayesian statistical methods
 Role of probability in data analysis (Frequentist, Bayesian)
 A simple fitting problem: Frequentist vs. Bayesian solution
 Bayesian computation, Markov Chain Monte Carlo
 Setting limits / making a discovery

Lecture #2: Multivariate methods for HEP
 Event selection as a statistical test
 Neyman-Pearson lemma and likelihood ratio test
 Some multivariate classifiers:
 - Boosted Decision Trees
 - Support Vector Machines
A definition of probability

Consider a set S with subsets A, B, ...

For all $A \subset S$, $P(A) \geq 0$

$$P(S) = 1$$

If $A \cap B = \emptyset$, $P(A \cup B) = P(A) + P(B)$

Also define conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Kolmogorov axioms (1933)
Interpretation of probability

I. Relative frequency

\(A, B, \ldots \) are outcomes of a repeatable experiment

\[
P(A) = \lim_{n \to \infty} \frac{\text{times outcome is } A}{n}
\]

cf. quantum mechanics, particle scattering, radioactive decay...

II. Subjective probability

\(A, B, \ldots \) are hypotheses (statements that are true or false)

\[
P(A) = \text{degree of belief that } A \text{ is true}
\]

- Both interpretations consistent with Kolmogorov axioms.
- In particle physics frequency interpretation often most useful, but subjective probability can provide more natural treatment of non-repeatable phenomena:
 systematic uncertainties, probability that Higgs boson exists,...
Bayes’ theorem

From the definition of conditional probability we have

\[P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{and} \quad P(B|A) = \frac{P(B \cap A)}{P(A)} \]

but \(P(A \cap B) = P(B \cap A) \), so

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

First published (posthumously) by the Reverend Thomas Bayes (1702–1761)

An essay towards solving a problem in the doctrine of chances, Philos. Trans. R. Soc. 53 (1763) 370; reprinted in Biometrika, 45 (1958) 293.
Frequentist Statistics – general philosophy

In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations.

Probability = limiting frequency

Probabilities such as

\[P(\text{Higgs boson exists}), \]
\[P(0.117 < \alpha_s < 0.121), \]

etc. are either 0 or 1, but we don’t know which.
The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations.

The preferred theories (models, hypotheses, ...) are those for which our observations would be considered ‘usual’.
Bayesian Statistics – general philosophy

In Bayesian statistics, interpretation of probability extended to degree of belief (subjective probability). Use this for hypotheses:

- probability of the data assuming hypothesis H (the likelihood)
- prior probability, i.e., before seeing the data
- posterior probability, i.e., after seeing the data

Bayesian methods can provide more natural treatment of non-repeatable phenomena:
- systematic uncertainties, probability that Higgs boson exists,...

No golden rule for priors (“if-then” character of Bayes’ thm.)
Example: fitting a straight line

Data: \((x_i, y_i, \sigma_i), i = 1, \ldots, n\).

Model: measured \(y_i\) independent, Gaussian: \(y_i \sim N(\mu(x_i), \sigma_i^2)\)

\[
\mu(x; \theta_0, \theta_1) = \theta_0 + \theta_1 x,
\]

assume \(x_i\) and \(\sigma_i\) known.

Goal: estimate \(\theta_0\)

(don’t care about \(\theta_1\)).
Frequentist approach

\[L(\theta_0, \theta_1) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma_i} \exp \left[-\frac{1}{2} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2} \right], \]

\[\chi^2(\theta_0, \theta_1) = -2 \ln L(\theta_0, \theta_1) + \text{const} = \sum_{i=1}^{n} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2}. \]

Standard deviations from tangent lines to contour

\[\chi^2 = \chi^2_{\text{min}} + 1. \]

Correlation between \(\hat{\theta}_0, \hat{\theta}_1 \) causes errors to increase.
Frequentist case with a measurement t_1 of θ_1

$$\chi^2(\theta_0, \theta_1) = \sum_{i=1}^{n} \frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{\sigma_i^2} + \frac{(\theta_1 - t_1)^2}{\sigma_{t_1}^2}.$$

The information on θ_1 improves accuracy of $\hat{\theta}_0$.
Bayesian method

We need to associate prior probabilities with θ_0 and θ_1, e.g.,

$$\pi(\theta_0, \theta_1) = \pi_0(\theta_0) \pi_1(\theta_1)$$

reflects ‘prior ignorance’, in any case much broader than $L(\theta_0)$

$$\pi_0(\theta_0) = \text{const.}$$

$$\pi_1(\theta_1) = \frac{1}{\sqrt{2\pi\sigma_{t_1}}} e^{-\frac{(\theta_1-t_1)^2}{2\sigma_{t_1}^2}}$$

based on previous measurement

Putting this into Bayes’ theorem gives:

$$p(\theta_0, \theta_1 | \vec{y}) \propto \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{i}}} e^{-\frac{(y_i - \mu(x_i; \theta_0, \theta_1))^2}{2\sigma_{i}^2}} \pi_0 \frac{1}{\sqrt{2\pi\sigma_{t_1}}} e^{-\frac{(\theta_1-t_1)^2}{2\sigma_{t_1}^2}}$$

posterior \propto likelihood \times prior
Bayesian method (continued)

We then integrate (marginalize) \(p(\theta_0, \theta_1 \mid x) \) to find \(p(\theta_0 \mid x) \):

\[
p(\theta_0 \mid x) = \int p(\theta_0, \theta_1 \mid x) \, d\theta_1 .
\]

In this example we can do the integral (rare). We find

\[
p(\theta_0 \mid x) = \frac{1}{\sqrt{2\pi}\sigma_{\theta_0}} e^{-\frac{(\theta_0 - \tilde{\theta}_0)^2}{2\sigma_{\theta_0}^2}} \quad \text{with}
\]

\[
\tilde{\theta}_0 = \text{same as ML estimator}
\]

\[
\sigma_{\theta_0} = \sigma_{\tilde{\theta}_0} \quad \text{(same as before)}
\]

Usually need numerical methods (e.g. Markov Chain Monte Carlo) to do integral.
Digression: marginalization with MCMC

Bayesian computations involve integrals like

\[p(\theta_0|x) = \int p(\theta_0, \theta_1|x) \, d\theta_1. \]

often high dimensionality and impossible in closed form, also impossible with ‘normal’ acceptance-rejection Monte Carlo.

Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian computation.

MCMC (e.g., Metropolis-Hastings algorithm) generates correlated sequence of random numbers:

cannot use for many applications, e.g., detector MC;
effective stat. error greater than naive \(\sqrt{n} \).

Basic idea: sample multidimensional \(\vec{\theta} \),
look, e.g., only at distribution of parameters of interest.
Example: posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of interest with, e.g., mean, median, standard deviation, etc.

Although numerical values of answer here same as in frequentist case, interpretation is different (sometimes unimportant?)
MCMC basics: Metropolis-Hastings algorithm

Goal: given an \(n \)-dimensional pdf \(p(\vec{\theta}) \),
generate a sequence of points \(\vec{\theta}_1, \vec{\theta}_2, \vec{\theta}_3, \ldots \)

1) Start at some point \(\vec{\theta}_0 \)
2) Generate \(\vec{\theta} \sim q(\vec{\theta}; \vec{\theta}_0) \)
3) Form Hastings test ratio \(\alpha = \min \left[1, \frac{p(\vec{\theta})q(\vec{\theta}_0; \vec{\theta})}{p(\vec{\theta}_0)q(\vec{\theta}; \vec{\theta}_0)} \right] \)
4) Generate \(u \sim \text{Uniform}[0, 1] \)
5) If \(u \leq \alpha \), \(\vec{\theta}_1 = \vec{\theta} \), move to proposed point
 else \(\vec{\theta}_1 = \vec{\theta}_0 \) old point repeated
6) Iterate

Proposal density \(q(\vec{\theta}; \vec{\theta}_0) \)
e.g. Gaussian centred about \(\vec{\theta}_0 \)
Metropolis-Hastings (continued)

This rule produces a *correlated* sequence of points (note how each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical errors larger than naive \sqrt{n}.

The proposal density can be (almost) anything, but choose so as to minimize autocorrelation. Often take proposal density symmetric: $q(\hat{\theta}; \bar{\theta}_0) = q(\bar{\theta}_0; \hat{\theta})$

Test ratio is (*Metropolis-Hastings*): $\alpha = \min \left[1, \frac{p(\hat{\theta})}{p(\bar{\theta}_0)} \right]$

I.e. if the proposed step is to a point of higher $p(\hat{\theta})$, take it; if not, only take the step with probability $p(\hat{\theta})/p(\bar{\theta}_0)$. If proposed step rejected, hop in place.
Metropolis-Hastings caveats

Actually one can only prove that the sequence of points follows the desired pdf in the limit where it runs forever.

There may be a “burn-in” period where the sequence does not initially follow $p(\vec{\theta})$.

Unfortunately there are few useful theorems to tell us when the sequence has converged.

Look at trace plots, autocorrelation.

Check result with different proposal density.

If you think it’s converged, try starting from a different point and see if the result is similar.
Bayesian method with alternative priors

Suppose we don’t have a previous measurement of θ_1 but rather, e.g., a theorist says it should be positive and not too much greater than 0.1 "or so", i.e., something like

$$\pi_1(\theta_1) = \frac{1}{\tau} e^{-\theta_1/\tau}, \quad \theta_1 \geq 0, \quad \tau = 0.1.$$

From this we obtain (numerically) the posterior pdf for θ_0:

This summarizes all knowledge about θ_0.

Look also at result from variety of priors.
A more general fit (symbolic)

Given measurements: \(y_i \pm \sigma_i^{\text{stat}} \pm \sigma_i^{\text{sys}}, \quad i = 1, \ldots, n \),

and (usually) covariances: \(V_{ij}^{\text{stat}}, V_{ij}^{\text{sys}} \).

Predicted value: \(\mu(x_i; \theta) \), expectation value \(E[y_i] = \mu(x_i; \theta) + b_i \)

control variable parameters bias

Often take: \(V_{ij} = V_{ij}^{\text{stat}} + V_{ij}^{\text{sys}} \)

Minimize \(\chi^2(\theta) = (\vec{y} - \vec{\mu}(\theta))^T V^{-1} (\vec{y} - \vec{\mu}(\theta)) \)

Equivalent to maximizing \(L(\theta) \propto e^{-\chi^2/2} \), i.e., least squares same as maximum likelihood using a Gaussian likelihood function.
Its Bayesian equivalent

Take

\[L(\bar{y}|\vec{\theta}, \vec{b}) \sim \exp \left[-\frac{1}{2} (\bar{y} - \vec{\mu}(\theta) - \vec{b})^T V_{\text{stat}}^{-1} (\bar{y} - \vec{\mu}(\theta) - \vec{b}) \right] \]

\[\pi_b(\vec{b}) \sim \exp \left[-\frac{1}{2} \vec{b}^T V_{\text{sys}}^{-1} \vec{b} \right] \]

\[\pi_\theta(\theta) \sim \text{const.} \]

Joint probability for all parameters

and use Bayes’ theorem:

\[p(\theta, \vec{b}|\bar{y}) \propto L(\bar{y}|\theta, \vec{b}) \pi_\theta(\theta) \pi_b(\vec{b}) \]

To get desired probability for \(\theta \), integrate (marginalize) over \(\vec{b} \):

\[p(\theta|\bar{y}) = \int p(\theta, \vec{b}|\bar{y}) \, d\vec{b} \]

→ Posterior is Gaussian with mode same as least squares estimator, \(\sigma_\theta \) same as from \(\chi^2 = \chi^2_{\text{min}} + 1 \). (Back where we started!)
Alternative priors for systematic errors

Gaussian prior for the bias b often not realistic, especially if one considers the "error on the error". Incorporating this can give a prior with longer tails:

$$
\pi_b(b_i) = \int \frac{1}{\sqrt{2\pi s_i \sigma_i^{\text{sys}}}} \exp \left[-\frac{1}{2} \frac{b_i^2}{(s_i \sigma_i^{\text{sys}})^2} \right] \pi_s(s_i) \, ds_i
$$

Represents ‘error on the error’; standard deviation of $\pi_s(s)$ is σ_s.

G. Cowan

CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis
A simple test

Suppose fit effectively averages four measurements.

Take \(\sigma_{\text{sys}} = \sigma_{\text{stat}} = 0.1 \), uncorrelated.

Case #1: data appear compatible

Posterior \(p(\mu|y) \):

Usually summarize posterior \(p(\mu|y) \) with mode and standard deviation:

\[
\begin{align*}
\sigma_s = 0.0 : & \quad \hat{\mu} = 1.000 \pm 0.071 \\
\sigma_s = 0.5 : & \quad \hat{\mu} = 1.000 \pm 0.072
\end{align*}
\]
Simple test with inconsistent data

Case #2: there is an outlier

→ Bayesian fit less sensitive to outlier.

(See also D'Agostini 1999; Dose & von der Linden 1999)
Goodness-of-fit vs. size of error

In LS fit, value of minimized χ^2 does not affect size of error on fitted parameter.

In Bayesian analysis with non-Gaussian prior for systematics, a high χ^2 corresponds to a larger error (and vice versa).

2000 repetitions of experiment, $\sigma_s = 0.5$, here no actual bias.

σ_μ from least squares
The Bayesian approach to limits

In Bayesian statistics need to start with ‘prior pdf’ \(\pi(\theta) \), this reflects degree of belief about \(\theta \) before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in light of the data \(x \):

\[
p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)
\]

Integrate posterior pdf \(p(\theta | x) \) to give interval with any desired probability content.

For e.g. Poisson parameter 95% CL upper limit from

\[
0.95 = \int_{-\infty}^{sup} p(s|n) ds
\]
Analytic formulae for limits

There are a number of papers describing Bayesian limits for a variety of standard scenarios:

- Several conventional priors
- Systematics on efficiency, background
- Combination of channels

and (semi-)analytic formulae and software are provided.

But for more general cases we need to use numerical methods (e.g. L.D. uses importance sampling).
Example: Poisson data with background

Count \(n \) events, e.g., in fixed time or integrated luminosity.

\[s = \text{expected number of signal events} \]

\[b = \text{expected number of background events} \]

\[n \sim \text{Poisson}(s+b): \quad P(n; s, b) = \frac{(s + b)^n}{n!}e^{-(s+b)} \]

Sometimes \(b \) known, other times it is in some way uncertain.

Goal: measure or place limits on \(s \), taking into consideration the uncertainty in \(b \).

Widely discussed in HEP community, see e.g. proceedings of PHYSTAT meetings, Durham, Fermilab, CERN workshops...
Bayesian prior for Poisson parameter

Include knowledge that \(s \geq 0 \) by setting prior \(\pi(s) = 0 \) for \(s < 0 \).

Often try to reflect ‘prior ignorance’ with e.g.

\[
\pi(s) = \begin{cases}
1 & s \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

Not normalized but this is OK as long as \(L(s) \) dies off for large \(s \).

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

 Doesn’t really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true \(s \)).
Bayesian interval with flat prior for s

Solve numerically to find limit s_{up}.

For special case $b = 0$, Bayesian upper limit with flat prior numerically same as classical case (‘coincidence’).

Otherwise Bayesian limit is everywhere greater than classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if $n = 0$.
Upper limit versus b

If $n = 0$ observed, should upper limit depend on b?

Classical: yes
Bayesian: no
FC: yes

Feldman & Cousins, PRD 57 (1998) 3873
Coverage probability of confidence intervals

Because of discreteness of Poisson data, probability for interval to include true value in general > confidence level (‘over-coverage’)

![Graphs showing coverage probability for different methods](image-url)
Bayesian limits with uncertainty on b

Uncertainty on b goes into the prior, e.g.,

$$\pi(s, b) = \pi_s(s)\pi_b(b) \quad \text{(or include correlations as appropriate)}$$

$$\pi_s(s) = \text{const}, \quad \sim 1/s, \ldots$$

$$\pi_b(b) = \frac{1}{\sqrt{2\pi\sigma_b}}e^{-(b-b_{\text{meas}})^2/2\sigma_b^2} \quad \text{(or whatever)}$$

Put this into Bayes’ theorem,

$$p(s, b|n) \propto L(n|s, b)\pi(s, b)$$

Marginalize over b, then use $p(s|n)$ to find intervals for s with any desired probability content.

Controversial part here is prior for signal $\pi_s(s)$
(treatment of nuisance parameters is easy).
Discussion on limits

Different sorts of limits answer different questions.
A frequentist confidence interval does not (necessarily) answer, “What do we believe the parameter’s value is?”

Coverage — nice, but crucial?

Look at sensitivity, e.g., $E[s_{up} \mid s = 0]$.

Consider also:
- politics, need for consensus/conventions;
- convenience and ability to combine results, ...

For any result, consumer will compute (mentally or otherwise):

$$p(\theta \mid \text{result}) \propto L(\text{result} \mid \theta) \pi(\theta)$$

Need likelihood (or summary thereof).

Consumer’s prior
Frequentist discovery, \(p \)-values

To discover e.g. the Higgs, try to reject the background-only (null) hypothesis \((H_0)\).

Define a statistic \(t \) whose value reflects compatibility of data with \(H_0 \).

\[
p\text{-value} = \text{Prob(data with } \leq \text{ compatibility with } H_0 \text{ when compared to the data we got } | \ H_0 \)
\]

For example, if high values of \(t \) mean less compatibility,

\[
p = \int_t^\infty f(t'|H_0) \, dt'.
\]

If \(p \)-value comes out small, then this is evidence against the background-only hypothesis \(\rightarrow \) discovery made!
Significance from p-value

Define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value.

\[p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx = 1 - \Phi(Z) \]

\[Z = \Phi^{-1}(1 - p) \]
When to publish

HEP folklore is to claim discovery when $p = 2.9 \times 10^{-7}$, corresponding to a significance $Z = 5$.

This is very subjective and really should depend on the prior probability of the phenomenon in question, e.g.,

<table>
<thead>
<tr>
<th>phenomenon</th>
<th>reasonable p-value for discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0D^0 mixing</td>
<td>~ 0.05</td>
</tr>
<tr>
<td>Higgs</td>
<td>$\sim 10^{-7}$ (?)</td>
</tr>
<tr>
<td>Life on Mars</td>
<td>$\sim 10^{-10}$</td>
</tr>
<tr>
<td>Astrology</td>
<td>$\sim 10^{-20}$</td>
</tr>
</tbody>
</table>
Bayesian model selection (‘discovery’)

The probability of hypothesis H_0 relative to its complementary alternative H_1 is often given by the posterior odds:

$$\frac{P(H_0|x)}{P(H_1|x)} = \frac{P(x|H_0)}{P(x|H_1)} \times \frac{\pi(H_0)}{\pi(H_1)}$$

The Bayes factor is regarded as measuring the weight of evidence of the data in support of H_0 over H_1.

Interchangeably use $B_{10} = 1/B_{01}$
Assessing Bayes factors

One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to our 5σ rule:

\[
\begin{array}{ll}
B_{10} & \text{Evidence against } H_0 \\
\hline
1 \text{ to } 3 & \text{Not worth more than a bare mention} \\
3 \text{ to } 20 & \text{Positive} \\
20 \text{ to } 150 & \text{Strong} \\
> 150 & \text{Very strong}
\end{array}
\]

Will this be adopted in HEP?
Rewriting the Bayes factor

Suppose we have models $H_i, i = 0, 1, ...,$

each with a likelihood $p(x|H_i, \theta_i)$

and a prior pdf for its internal parameters $\pi_i(\theta_i)$

so that the full prior is $\pi(H_i, \theta_i) = p_i \pi_i(\theta_i)$

where $p_i = P(H_i)$ is the overall prior probability for H_i.

The Bayes factor comparing H_i and H_j can be written

$$B_{ij} = \frac{P(H_i|x)}{P(H_j)} / \frac{P(H_j|x)}{P(H_j)}$$
Bayes factors independent of $P(H_i)$

For B_{ij} we need the posterior probabilities marginalized over all of the internal parameters of the models:

$$P(H_i|\vec{x}) = \int P(H_i, \vec{\theta}_i|\vec{x}) \ d\vec{\theta}_i$$

$$= \int L(\vec{x}|H_i, \vec{\theta}_i)p_i \pi_i(\vec{\theta}_i) \ d\vec{\theta}_i$$

$$= \frac{\int L(\vec{x}|H_i, \vec{\theta}_i)p_i \pi_i(\vec{\theta}_i) \ d\vec{\theta}_i}{P(x)}$$

So therefore the Bayes factor is

$$B_{ij} = \frac{\int L(\vec{x}|H_i, \vec{\theta}_i)\pi_i(\vec{\theta}_i) \ d\vec{\theta}_i}{\int L(\vec{x}|H_j, \vec{\theta}_j)\pi_j(\vec{\theta}_j) \ d\vec{\theta}_j}$$

The prior probabilities $p_i = P(H_i)$ cancel.
Numerical determination of Bayes factors

Both numerator and denominator of B_{ij} are of the form

$$m = \int L(\vec{x}|\vec{\theta})\pi(\vec{\theta}) \, d\vec{\theta} \quad \text{‘marginal likelihood’}$$

Various ways to compute these, e.g., using sampling of the posterior pdf (which we can do with MCMC).

Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
...

Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

\[
\frac{\pi(\theta)}{m} = \frac{p(\theta|x)}{L(x|\theta)}
\]

\(\pi(\theta)\) is normalized to unity so integrate both sides,

\[
m^{-1} = \int \frac{1}{L(x|\theta)} p(\theta|x) \, d\theta = E_p[1/L]
\]

Therefore sample \(\theta\) from the posterior via MCMC and estimate \(m\) with one over the average of \(1/L\) (the harmonic mean of \(L\)).

Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable; formally infinite variance (!). Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply both sides by arbitrary pdf $f(\theta)$:

$$\frac{f(\theta)p(\theta|x)}{L(x|\theta)\pi(\theta)} = \frac{f(\theta)}{m}$$

Integrate over θ:

$$m^{-1} = \int \frac{f(\theta)p(\theta|x)}{L(x|\theta)\pi(\theta)} = E_p \left[\frac{f(\theta)}{L(x|\theta)\pi(\theta)} \right]$$

Improved convergence if tails of $f(\theta)$ fall off faster than $L(x|\theta)\pi(\theta)$

Note harmonic mean estimator is special case $f(\theta) = \pi(\theta)$.

Importance sampling

Need pdf $f(\theta)$ which we can evaluate at arbitrary θ and also sample with MC.

The marginal likelihood can be written

$$m = \int \frac{L(x|\theta)\pi(\theta)}{f(\theta)} f(\theta) d\theta = E_f \left[\frac{L(x|\theta)\pi(\theta)}{f(\theta)} \right]$$

Best convergence when $f(\theta)$ approximates shape of $L(x|\theta)\pi(\theta)$.

Use for $f(\theta)$ e.g. multivariate Gaussian with mean and covariance estimated from posterior (e.g. with MINUIT).
Summary of lecture 1

The distinctive features of Bayesian statistics are:

Subjective probability used for hypotheses (e.g. a parameter).

Bayes' theorem relates the probability of data given H (the likelihood) to the posterior probability of H given data:

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$$

Bayesian methods often yield answers that are close (or identical) to those of frequentist statistics, albeit with different interpretation.

This is not the case when the prior information is important relative to that contained in the data.
Extra slides
Some Bayesian references

P. Gregory, *Bayesian Logical Data Analysis for the Physical Sciences*, CUP, 2005

D. Sivia, *Data Analysis: a Bayesian Tutorial*, OUP, 2006

A. Gelman et al., *Bayesian Data Analysis*, 2nd ed., CRC, 2004

Setting limits on Poisson parameter

Consider again the case of finding \(n = n_s + n_b \) events where

- \(n_b \) events from known processes (background)
- \(n_s \) events from a new process (signal)

are Poisson r.v.s with means \(s, b \), and thus \(n = n_s + n_b \) is also Poisson with mean \(= s + b \). Assume \(b \) is known.

Suppose we are searching for evidence of the signal process, but the number of events found is roughly equal to the expected number of background events, e.g., \(b = 4.6 \) and we observe \(n_{\text{obs}} = 5 \) events.

The evidence for the presence of signal events is not statistically significant,

\[\rightarrow \text{ set upper limit on the parameter } s. \]
Upper limit for Poisson parameter

Find the hypothetical value of s such that there is a given small probability, say, $\gamma = 0.05$, to find as few events as we did or less:

$$\gamma = P(n \leq n_{\text{obs}}; s, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s + b)^n}{n!} e^{-(s+b)}$$

Solve numerically for $s = s_{\text{up}}$, this gives an upper limit on s at a confidence level of $1-\gamma$.

Example: suppose $b = 0$ and we find $n_{\text{obs}} = 0$. For $1-\gamma = 0.95$,

$$\gamma = P(n = 0; s, b = 0) = e^{-s} \quad \rightarrow \quad s_{\text{up}} = -\ln \gamma \approx 3.00$$
Calculating Poisson parameter limits

To solve for s_{lo}, s_{up}, can exploit relation to χ^2 distribution:

$$s_{lo} = \frac{1}{2} F_{\chi^2}^{-1}(\alpha; 2n) - b$$

$$s_{up} = \frac{1}{2} F_{\chi^2}^{-1}(1 - \beta; 2(n + 1)) - b$$

Quantile of χ^2 distribution

For low fluctuation of n this can give negative result for s_{up}; i.e. confidence interval is empty.
Limits near a physical boundary

Suppose e.g. $b = 2.5$ and we observe $n = 0$.

If we choose CL = 0.9, we find from the formula for s_{up}

$$s_{up} = -0.197 \quad (CL = 0.90)$$

Physicist:

We already knew $s \geq 0$ before we started; can’t use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a physical boundary, cf. m_ν estimated using $E^2 - p^2$.
Expected limit for $s = 0$

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}$!

Reality check: with $b = 2.5$, typical Poisson fluctuation in n is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?

Look at the mean limit for the no-signal hypothesis ($s = 0$) (sensitivity).

Distribution of 95% CL limits with $b = 2.5$, $s = 0$.
Mean upper limit = 4.44
The Bayesian approach

In Bayesian statistics need to start with ‘prior pdf’ $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in light of the data x:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') \, d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta\mid x)$ to give interval with any desired probability content.

For e.g. Poisson parameter 95% CL upper limit from

$$0.95 = \int_{-\infty}^{s_{\text{up}}} p(s|n) \, ds$$
Bayesian prior for Poisson parameter

Include knowledge that $s \geq 0$ by setting prior $\pi(s) = 0$ for $s < 0$.

Often try to reflect ‘prior ignorance’ with e.g.

$$
\pi(s) = \begin{cases}
1 & s \geq 0 \\
0 & \text{otherwise}
\end{cases}
$$

Not normalized but this is OK as long as $L(s)$ dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true s).
Bayesian interval with flat prior for s

Solve numerically to find limit s_{up}.

For special case $b = 0$, Bayesian upper limit with flat prior numerically same as classical case (‘coincidence’).

Otherwise Bayesian limit is everywhere greater than classical (‘conservative’).

Never goes negative.

 Doesn’t depend on b if $n = 0$.
Likelihood ratio limits (Feldman-Cousins)

Define likelihood ratio for hypothesized parameter value s:

$$ l(s) = \frac{L(n|s, b)}{L(n|\hat{s}, b)} \quad \text{where} \quad \hat{s} = \begin{cases} n - b & n \geq b, \\ 0 & \text{otherwise} \end{cases} $$

Here \hat{s} is the ML estimator, note $0 \leq l(s) \leq 1$.

Critical region defined by low values of likelihood ratio.

Resulting intervals can be one- or two-sided (depending on n).

More on intervals from LR test (Feldman-Cousins)

Caveat with coverage: suppose we find $n \gg b$.
Usually one then quotes a measurement: $\hat{s} = n - b$, $\hat{\sigma}_s = \sqrt{n}$

If, however, n isn’t large enough to claim discovery, one sets a limit on s.

FC pointed out that if this decision is made based on n, then the actual coverage probability of the interval can be less than the stated confidence level (‘flip-flopping’).

FC intervals remove this, providing a smooth transition from 1- to 2-sided intervals, depending on n.

But, suppose FC gives e.g. $0.1 < s < 5$ at 90\% CL, p-value of $s=0$ still substantial. Part of upper-limit ‘wasted’?