Neutrino Physics – part2

CERN School of High Energy Physics 2009 Bautzen, Germany, June 14-27, 2009

4. The Future of Neutrino Oscillations

Precision neutrino physics

very valuable to exclude / constrain / test models of flavour (discrete symmetries, ...)

Future Precision Oscillation Physics

Precise measurements **→** 3f oscillation formulae

<u>Aims</u>: → improved precision of the leading 2x2 oscillations
 → detection of generic 3-neutrino effects: θ₁₃, CP violation

<u>Complication</u>: Matter effects \rightarrow effective parameters in matter \rightarrow expansion in small quantities θ_{13} and $a = \Delta m^2_{sol} / \Delta m^2_{atm}$

Burguet-Castell et al., Akhmedov et al. ...

Future Precision with Reactor Experiments $\overline{\nu}_{e}$ **near detector** (170m) $\xrightarrow{\overline{\nu}_e}$ far detector (1700m) identical detectors **→** many errors cancel A R R R R $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} - \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$ Survival Probablity → Double Chooz 0.8 atmospheric ➔ Daya Bay **3 flavour effect** → Reno 0.6 no degeneracies → Angra 0.4 no correlations 0.2 no matter effects clean & precise solar 0└─ 10⁻¹ θ_{13} measurments 10 1 L/E (km/MeV)

European School of High Energy Physics

40km 80km

 $E=4MeV \rightarrow$

Manfred Lindner

2km

4km

Existing far detector hall

Double Chooz and Triple Chooz

Different Neutrino Beams

A) conventional v-beams from targets **>** intense superbeams

B) neutrino factories

C) radioactive β-bemas

 \bullet Pure ν_e or $\overline{\nu}_e$ beam from radioactive decay, $\gamma\simeq 100$

Future Precison with New Neutrino Beams

- conventional beams, superbeams
 → MINOS, CNGS, T2K, NOvA, T2H,...
- <u>β-beams</u>
 - → pure v_e and \bar{v}_e beams from radioactive decays; $\gamma \simeq 100$
- <u>neutrino factories</u>

 \rightarrow clean neutrino beams from decay of stored μ 's

$$P(\nu_e \to \nu_\mu) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2}$$

$$\pm \sin \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \sin \delta_{CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$$

$$+ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

correlations & degeneracies, matter effects

European School of High Energy Physics

Simulation of Future Experiments

- select a setup (beam, detector, baseline, ...)
- take "most realistic" parameters $\leftarrow \rightarrow$ best guess!
- simulate all relevant aspects as good as possible

	Source	\otimes	Oscillation	\otimes	Detector	
- neutr - flux a - flavor - conta - symn	Fino energy E and spectrum ur composition amination netric $\nu/\overline{\nu}$ operat	ion	 oscillation channel realistic baselines MSW matter prof degeneracies correlations 	ls ile	 effective mass threshold, response particle ID (* event reconst backgrounds x-sections (a 	ss, material solution flavour, charge, truction,) t low E)

• determine the potential: "true" ← → fitted parameters

• compare only realistic simulations (all relevant effects, errors & uncertainties)

A Powerful Simulation Tool

General Long Baseline Experiment Simulator

Comp. Phys. Comm. 167 (2005) 195, hep-ph/0407333

http://www.mpi-hd.mpg.de/~globes

P. Huber, ML, W. Winter M. Freund, M. Rolinec

- powerful C-based simulation software (GPL = free)
- extensive documentation & examples
- 3 phase approach:
- 1) **AEDL** (Abstract Experiment Definition Language)
- 2) simulation of an experiment \rightarrow 3-v oscillations; scan "true values"
- 3) analysis \rightarrow event distriutions, ..., sensitivities, ...

θ_{13} – Now and in the Future

Leptonic CP-Violation

<u>assume:</u> $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2 \rightarrow \text{combine T2K+NOvA+reactor}$

→ bounds or measurements of leptonic CP-violation

- \rightarrow harder for smaller sin²2 θ_{13}
- \Rightarrow β -beams or/and neutrino factory $\Rightarrow \theta_{13}$ is a key parameter for road maps

Further Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... $\leftarrow \rightarrow$ discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?

Provides also measurements / tests of:

- **MSW effect** (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity **< >** sterile neutrinos with small mixings
- neutrino decay (admixture...)
- decoherence
- NSI
- MVN, ...

→ various synergies with LHC and LFV

5. The Value of Future Precision Experiments

- Unique insight into various sources
 e.g. BOREXINO: Be flux, CNO, ... → stellar evolution
- 2) Information from lepton sector orthogonal to quarks
 → free of hadronic uncertainties
 → origin of flavour

Learning about Flavour

Next: Smallness of θ_{13} , θ_{23} **maximal**

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} predictions
 - $\rightarrow \theta_{13}$ expected close to ex. bound
 - → well motivated experiments

what if θ_{13} is very tiny? or if θ_{23} is very close to maximal?

numerical coincidence unlikely
 special reasons (symmetry, ...)

→ answered by coming precision

The larger Picture: GUTs

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa couplings for given GUT multiplet
- \rightarrow ~ tension: small quark mixings $\leftarrow \rightarrow$ large leptonic mixings
- → this was in fact the reason for the `prediction' of small mixing angles (SMA) – ruled out by data

Mechanisms to post-dict large mixings:

- → sequential dominance
- → type II see-saw
- ➔ Dirac screening
- →...

Sequential Dominance

$$m_D = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & a & b \\ \cdot & c & d \end{pmatrix} \quad M_R = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & x & 0 \\ \cdot & 0 & y \end{pmatrix}$$
$$\longrightarrow \qquad m_\nu = -m_D \cdot M_R^{-1} \cdot m_D^T = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \frac{a^2}{x} + \frac{b^2}{y} & \frac{ac}{x} + \frac{bd}{y} \\ \cdot & \frac{ac}{x} + \frac{bd}{y} & \frac{c^2}{x} + \frac{d^2}{y} \end{pmatrix}$$

If one right-handed neutrino dominates, e.g. y >> x

- \rightarrow small sub-determinant ~ m₂.m₃
- \rightarrow m₂ << m₃ (hierachy) and tan $\theta_{23} \simeq a/c$ (large mixing)

$$M_R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \xrightarrow{\mathbf{x} < \mathbf{y} < \mathbf{z}}$$

<u>sequenatial dominance:</u> m₁ << m₂ << m₃ natural

naturally large mixings

S.F. King, ...

Large Mixings and See-Saw Type II

see-saw type II:

- rather natural

$$\mathbf{m}_{v} = \mathbf{M}_{L} - \mathbf{m}_{D} \mathbf{M}_{R}^{-1} \mathbf{m}_{D}^{T}$$

<u>m_D and M_R may have small mixings and hierarchy</u> However: M_L can be numerically more important Example: Break GUT \rightarrow SU(2)_L x SU(2)_R x U(1)_{B-L} \rightarrow M_L from LR \rightarrow large mixings natural for almost degenerate case m₁~m₂~m₃ \rightarrow type I see-saw would only be a correction

type I – type II interference → Rodejohann, ML
 M_L ~ m_DM_R⁻¹m_D^T → interesting possibilities
 → dominance of one term + perturbation by 2nd term

$U_{e3}=0$; maximal $\theta_{23} \rightarrow$ small perturbation

Leading structure from one type II term \rightarrow **perturbation by 2nd** Three simple, stable candidates for U_{e3}=0 and maximal θ_{23}

$$(A) : \sqrt{\frac{\Delta m_A^2}{4}} \begin{pmatrix} 0 & 0 & 0 \\ \cdot & 1 & -1 \\ \cdot & \cdot & 1 \end{pmatrix} \qquad L_e \quad EV = \sqrt{\Delta m_A^2} \quad NH$$
$$(B) : \sqrt{\frac{\Delta m_A^2}{2}} \begin{pmatrix} 0 & 1 & 1 \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{pmatrix} \qquad L_e - L_\mu - L_\tau \quad EV = 0 \quad IH$$
$$(C) : m_0 \begin{pmatrix} 1 & 0 & 0 \\ \cdot & 0 & 1 \\ \cdot & \cdot & 0 \end{pmatrix} \qquad L_\mu - L_\tau \quad EV = -m_0 \quad degenerate$$

Perturbation of the Leading Structure

e.g. 'democratic' perturbation:

$$m_{\nu}^{I} \simeq v_{L} \epsilon \begin{pmatrix} 1 & 1 & 1 \\ \cdot & 1 & 1 \\ \cdot & \cdot & 1 \end{pmatrix}$$

e.g. as correction to case (A):

→ naturally large $\theta_{12} = 1/3$ (tri-bimaximal mixing) → finite $\theta_{13} \simeq \sqrt{(\Delta m_{sol}^2 / \Delta m_{atm}^2)} \simeq 1/30$

$$\rightarrow$$
 corrections to $\theta_{23} - \pi/4 \simeq \sqrt{(\Delta m_{sol}^2 / \Delta m_{atm}^2)} \simeq 1/30$

Tri-bimaximal Mixing

- tri-bimaximal mixing works phenomenologically very well
- mass matrix can be written as a sum of three terms

$$m_{\nu} = \frac{m_{1}}{6} \begin{pmatrix} 4 & -2 & -2 \\ \cdot & 1 & 1 \\ \cdot & \cdot & 1 \end{pmatrix} + \frac{m_{2}}{3} \begin{pmatrix} 1 & 1 & 1 \\ \cdot & 1 & 1 \\ \cdot & \cdot & 1 \end{pmatrix} + \frac{m_{3}}{2} \begin{pmatrix} 0 & 0 & 0 \\ \cdot & 1 & -1 \\ \cdot & \cdot & 1 \end{pmatrix}$$

- phenomenologically very successful
- tempting to think of it as a consequence of three terms
- type II ← → m₂,m₃

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetry not texture zeros

Examples:

phenomenologically promising example: D₅ Hagedorn, ML, Plentinger

task: search for mass terms which are for suitable Higges singlets under $D_{\underline{5}}$ 1) assign fermions to representations $L = \{L_1, L_2, L_3\}$

2) write down any possible mass term using scalars $\leftarrow \rightarrow$ singlet under symmetry

D₅ Allowed Mass Terms

Dirac mass terms:

$$egin{aligned} &\lambda_{ij}L_i^T(i\sigma_2)\phi L_j^c\ &\lambda_{ij}L_i^Tigodot \phi L_j \end{aligned}$$

<u>Majorana mass terms:</u>

→D5 symmetry induced mass matrices:

PROBLEM: many sucessful symmetries

GUT \otimes Flavour Unification

→ GUT group ⊗ flavour group

<u>example:</u> SO(10) \otimes SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB
 - e.g. Z2, S3, D5, A4
 - ➔ structures in flavour space
 - ➔ compare with data

 $\mbox{GUT}\otimes\mbox{flavour}$ is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

- → so far only a few viable models rather limited number of possibilities; phenomenological success non-trivial
- → aim: distinguish models further by future precision

Guaranteed Results & Surprises?

- Precise angles, phases and masses!
- Potential for other physics!
- Unexpected effects?

Other effective Operators Beyond the SM

→ effects beyond 3 flavours
 → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{\alpha\beta} 2\sqrt{2} G_F(\bar{\nu}_{L\beta} \ \gamma^{\rho} \ \nu_{L\alpha})(\bar{f}_L \gamma_{\rho} f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$
 f

NSIs & Oscillations

Future precision oscillation experiments:

- must include full 3 flavour oscillation probabilities
- matter effects
- define sensitivities on an event rate basis
 - ➔ Simulations with GLoBES

Source \otimes	Oscillation \otimes	Detector
- neutrino energy E - flux and spectrum - flavour composition - contamination - symmetric $\nu/\overline{\nu}$ operation	 oscillation channels realistic baselines MSW matter profile degeneracies correlations 	 effective mass, material threshold, resolution particle ID (flavour, charg event reconstruction,) backgrounds x-sections (at low E)

precision experiments might see new effects beyond oscillations → NSIs!

NSIs interfere with Oscillations

<u>note</u>: interference in oscillations ~ $\epsilon \mid \ FCNC$ effects ~ ϵ^2

Manfred Lindner

European School of High Energy Physics

NSI: Offset and Mismatch in θ_{13}

Kopp, ML, Ota, Sato

6. Neutrino as Probes into Sources

unique insights into sources! connections to many fields

Solar Neutrinos: Learning About the Sun

Observables:

- optical (total energy, surface dynamics, sun-spots, historical records, B, ...)
- **neutrinos** (rates, spectrum, ...)

Topics:

- nuclear cross sections
 - (at finite T ~ few MeV)
- solar dynamics
- helio-seismology
- variability
- composition

Manfred Lindner

European School of High Energy Physics

Solar Neutrino Spectroscopy

Borexino tests the Sun

BOREXINO:

the sun in real time photons ~10ky delay

47<u>+</u>7 events / day /100t expected: with oscillation 49<u>+</u>4 without 75<u>+</u>4

More to come:

Improved statistics and reduced systematics

- → 3.5% seasonal variation...
- → CNO cycle
- → geo-neutrinos, ...

Borexino: 192 Days of Data

Supernova Neutrinos

Simulated Supernova Signal at SK

Simulation for Super-Kamiokande SN signal at 10 kpc Totani, Sato, Dalhed & Wilson

Amanda/IceCube as a Supernova Detector

2 possibilities:

Supernovae & Gravitational Waves

Dimmelmeier, Font, Müller

- → additional information about galactic SN
- → global fits: optical + neutrinos + gravitational waves
- ➔ neutrino properties + SN explosion dynamics
- → SN1987A: strongest constraints on large extra dimensions

Neutrinos & TeV y's

HESS and EGRET:

- \bullet TeV $\gamma {}^{\star}s$ from galactic center and galactic plane
- 8 sources observed
- some are at the position of known SN remnants
- others do not correlate to anything known?

Plausible explanation:

- -SN shock front acceleration
- γ´s from π⁰ decay
 - \rightarrow v flux from GC
 - → v signal @ km³ detectors

Neutrino Telescopes

Learning from Atmospheric Neutrinos

Geo Neutrinos as Probes of the Earth

- radiogenic part of terrestrial heat flow ~80 mW/m² → total: ~40 TW
- test geochemical model of the Earth, the Bulk Silicate Earth
- test unorthodox ideas of Earth's interior (K @ core, giant reactor)

Geo-Neutrino Observation at KamLAND

7. New Ideas / Challanges

- Strong beta source in TPC
- Neutrinos and atom traps
- Detecting cosmological neutrinos
- GSI oscillations ???
- Mößbauer neutrinos

Mößbauer Neutrinos

$T \xrightarrow{EC-process} 3He + v_e \rightarrow monochromatic neutrinos$ T recoil

→ recoil-less emission

→ Tritium-production

Questions:

- 1) Oscillations
 > YES, but not as simple as usual
- 2) Feasability \rightarrow ???, not now, future?

Development of Future Experiments

European School of High Energy Physics

Neutrinos probe new physics in many ways!

