The production of the light elements from D to B

- BBN and the early Universe
- WMAP determination of η , $\Omega_{\rm B}h^2$
- Observations and Comparison with Theory
 - D/H - ⁴He - ⁷Li
- Cosmic-ray nucleosynthesis
 - ^{6,7}Li
 - BeB

Conditions in the Early Universe:

$$T \gtrsim 1 \text{ MeV}$$

$$\rho = \frac{\pi^2}{30} \left(2 + \frac{7}{2} + \frac{7}{4} N_\nu\right) T^4$$

$$\eta = n_B / n_\gamma \sim 10^{-10}$$

β -Equilibrium maintained by weak interactions

 $\begin{array}{l} \textbf{Freeze-out at} \sim 1 \,\, \textbf{MeV determined by the} \\ \textbf{competition of expansion rate} \,\, H \sim T^2/M_p \,\, \textbf{and} \\ \textbf{the weak interaction rate} \,\, \Gamma \sim G_F^2 T^5 \\ n + e^+ \,\, \leftrightarrow \,\, p + \bar{\nu}_e \\ n + \nu_e \,\, \leftrightarrow \,\, p + e^- \\ n \,\, \leftrightarrow \,\, p + e^- + \bar{\nu}_e \end{array}$

At freezeout n/p fixed modulo free neutron decay, $(n/p) \simeq 1/6 \rightarrow 1/7$

Nucleosynthesis Delayed (Deuterium Bottleneck)

 $p+n \rightarrow \mathbf{D} + \gamma \qquad \qquad \Gamma_p \sim n_B \sigma$

 $p + n \leftarrow \mathbf{D} + \gamma$ $\Gamma_d \sim n_\gamma \sigma e^{-E_B/T}$

Nucleosynthesis begins when $\Gamma_p \sim \Gamma_d$

$$\frac{n_{\gamma}}{n_B}e^{-E_B/T} \sim 1 \qquad \qquad \mathbf{@} \ T \sim 0.1 \ \mathbf{MeV}$$

All neutrons $\rightarrow {}^{4}$ He $Y_{p} = \frac{2(n/p)}{1 + (n/p)} \simeq 25\%$

Remainder:

D, ³He $\sim 10^{-5}$ and ⁷Li $\sim 10^{-10}$ by number

Decline:

BBN could <u>not</u> explain the abundances (or patterns) of <u>all</u> the elements.

 \Rightarrow growth of stellar nucleosynthesis

Decline:

BBN could <u>not</u> explain the abundances (or patterns) of <u>all</u> the elements.

 \Rightarrow growth of stellar nucleosynthesis

But, Questions persisted: 25% (by mass) of ⁴He ? D? Resurgence: BBN could successfully account for the abundance of

D, ³He, ⁴He, ⁷Li.

FIG. 1.-Reaction network used in the code. Estimated reactions are shown with dashed lines.

Big Bang Nucleosynthesis

- Production of the Light Elements: D, ³He, ⁴He, ⁷Li
 - ⁴He observed in extragalctic HII regions: abundance by mass = 25%
 - ⁷Li observed in the atmospheres of dwarf halo stars: abundance by number = 10^{-10}
 - D observed in quasar absorption systems (and locally): abundance by number = 3×10^{-5}
 - ³He in solar wind, in meteorites, and in the ISM: abundance by number = 10^{-5}

D/H

- All Observed D is Primordial!
- Observed in the ISM and inferred from meteoritic samples (also HD in Jupiter)
- D/H observed in Quasar Absorption systems

QSO	$z_{ m em}$	$z_{ m abs}$	$\log N({ m H~{\sc i}})$ (cm ⁻²)	$[O/H]^{b}$	$\log \left(\mathrm{D/H} \right)$
$HS0105{+}1619$	2.640	2.53600	19.42 ± 0.01	-1.70	-4.60 ± 0.04
Q0913+072	2.785	2.61843	20.34 ± 0.04	-2.37	-4.56 ± 0.04
Q1009+299	2.640	2.50357	17.39 ± 0.06	$< -0.67^{c}$	-4.40 ± 0.07
Q1243+307	2.558	2.52566	19.73 ± 0.04	-2.76	-4.62 ± 0.05
SDSS J155810.16 -003120.0	2.823	2.70262	20.67 ± 0.05	-1.47	-4.48 ± 0.06
Q1937-101	3.787	3.57220	17.86 ± 0.02	< -0.9	-4.48 ± 0.04
Q2206-199	2.559	2.07624	20.43 ± 0.04	-2.04	-4.78 ± 0.09

Tytler, O'Meara, Suzuki, Lubin

D/H abundances in Quasar apsorption systems

BBN Prediction: $10^5 \text{ D/H} = 2.74^{+0.26}_{-0.16}$

Obs Average: $10^5 \text{ D/H} = 2.82 \pm 0.21$

⁴He

Measured in low metallicity extragalactic HII regions (~100) together with O/H and N/H

 $Y_P = Y(O/H \rightarrow 0)$

10⁶ O/H

I Zw 18

Fig. 1. Low dispersion blue spectrogram of NGC 2363, showing the faintest lines measured

⁴He

Izotov & Thuan

Method:

- Intensity and Eq. Width for H and He
- Determine H reddening and underlying absorption
- Use 6 He emission lines to determine physical parameters:
 - denisty, optical depth, temperature, underlying He absorption, ⁴He abundance
- Severe degeneracies revealed by Monte Carlo anaysis

KAO + Skillman

⁴He Prediction: 0.2484 ± 0.0005

Data: Regression: 0.2495 ± 0.0092

Mean: 0.2520 ± 0.0030

Li/H

Measured in low metallicity dwarf halo stars (over 100 observed)

Li Woes

- Observations based on
 - "old": $Li/H = 1.2 \times 10^{-10}$ Spite & Spite +
 - Balmer: $Li/H = 1.7 \times 10^{-10}$
 - IRFM: $Li/H = 1.6 \times 10^{-10}$ Bonifacio & Molaro
 - IRFM: $Li/H = 1.2 \times 10^{-10}$ Ryan, Beers, KAO, Fields, Norris
 - H α (globular cluster): Li/H = 2.2 x 10⁻¹⁰
 - H α (globular cluster): Li/H = 2.3 x 10⁻¹⁰
 - $\lambda 6104$: Li/H ~ 3.2 x 10⁻¹⁰ Ford et al.
- Li depends on T, ln g, [Fe/H], depletion, post BBN-processing, ...
- Strong systematics

Bonifacio et al.

Molaro, Primas & Bonifacio

Bonifacio

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

Reaction/Parameter	sensitivities (α_i)
$\eta_{10}/6.14$	+2.04
$n(p,\gamma)d$	+1.31
${}^{3}\mathrm{He}(lpha,\gamma){}^{7}\mathrm{Be}$	+0.95
${}^{3}\mathrm{He}(d,p){}^{4}\mathrm{He}$	-0.78
$d(d,n)^3$ He	+0.72
$^7\mathrm{Be}(n,p)^7\mathrm{Li}$	-0.71
Newton's G_N	-0.66
$d(p,\gamma)^3$ He	+0.54
n-decay	+0.49
$N_{\nu,eff}/3.0$	-0.26
$^{3}\mathrm{He}(n,p)t$	-0.25
d(d,p)t	+0.078
$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$	-0.072
$t(lpha,\gamma)^7 { m Li}$	+0.040
$t(d,n)^4$ He	-0.034
$t(p,\gamma)^4$ He	+0.019
$^{7}\mathrm{Be}(n,\alpha)^{4}\mathrm{He}$	-0.014
$^{7}\mathrm{Be}(d,p)2^{4}\mathrm{He}$	-0.0087

New ³He(α,γ)⁷Be measurements

Cyburt and Wands

17% increase in S \Rightarrow 16% increase in Li

In addition, 1.5% increase in η , leads to 3% increase in Li (Li ~ $\eta^{2.12}$) plus another ~1% from pn

Net change in Li: 4.26 x 10⁻¹⁰ to 5.24 x 10⁻¹⁰ or 23%

Cyburt, Fields, KAO

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer Korn et al. Stellar Depletion in the Turbulence Model of Korn et al.

Possible sources for the discrepancy

• Nuclear Rates

Coc et al. Cyburt, Fields, KAO

- Restricted by solar neutrino flux

- Stellar Depletion
 - lack of dispersion in the data, ⁶Li abundance
 - standard models (< .05 dex), models (0.2 0.4 dex)

Vauclaire & Charbonnel Pinsonneault et al. Richard, Michaud, Richer

• Stellar parameters

 $\frac{dLi}{dlng} = \frac{.09}{.5} \qquad \qquad \frac{dLi}{dT} = \frac{.08}{100K}$

Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP

Jorge Meléndez
1 and Iván $\rm Ramírez^2$

New evaluation of surface temperatures in 41 halo stars with systematically higher temperatures (100-300 K)

> $[Li] = 2.37 \pm 0.1$ Li/H = 2.34 ± 0.54 x 10⁻¹⁰

BBN Prediction: 10^{10} Li/H = $4.26^{+0.73}_{-0.60}$

Recent dedicated temperature determinations (excitation energy technique)

Hosford, Ryan, Garcia-Perez, Norris, Olive

Resulting Li:

$[Li] = 2.16 \pm 0.07 \text{ MS} \\= 2.10 \pm 0.07 \text{ SGB}$

Hosford, Ryan, Garcia-Perez, Norris, Olive

Possible sources for the discrepancy

- Nuclear Rates
 - Restricted by solar neutrino flux

Coc et al. Cyburt, Fields, KAO

• Stellar parameters

 $\frac{dLi}{dlng} = \frac{.09}{.5} \qquad \qquad \frac{dLi}{dT} = \frac{.08}{100K}$

• Particle Decays

Solution 1: Particle Decays

Jedamzik

Effects of Bound States

- In SUSY models with a $\widetilde{\tau}$ NLSP, bound states form between ⁴He and $\widetilde{\tau}$
- •The ⁴He (D, γ) ⁶Li reaction is normally highly suppressed (production of low energy γ)
- •Bound state reaction is not suppressed

CMSSM

Cyburt, Ellis, Fields, KO, Spanos

Cyburt, Ellis, Fields, KO, Spanos

Possible sources for the discrepancy

• Stellar parameters

dLi	.09	dLi	.08
\overline{dlng}	.5	$\overline{dT} =$	$=\overline{100K}$

• Particle Decays

• Variable Constants

Limits on the variations of α

- Cosmology
 - BBN
 - CMB
- The Oklo Reactor
- Meteoritic abundances
- Atomic clocks

How does a Fundamental Constant Change?

$$\mathcal{L} \sim \phi R$$
 $\langle \phi \rangle = \frac{1}{16\pi G_N} = \frac{M_P^2}{16\pi}$

$$\mathcal{L} \sim \phi F^2$$
 $\langle \phi \rangle = \frac{1}{4e^2} = \frac{1}{16\pi\alpha}$

Does this ever happen?

e.g. JBD Theory $S = \int d^4x \sqrt{g} \left[\phi R - \frac{\omega}{\phi} \partial_{\mu} \phi \partial^{\mu} \phi + \mathcal{L}_m \right]$

with a conformal rescaling,

$$\begin{split} S &= \int d^4x \sqrt{\overline{g}} \left[\overline{R} - (\omega + \frac{3}{2}) \frac{(\partial_\mu \phi)^2}{\phi^2} \right. \\ &\left. - \frac{1}{2} \frac{(\partial_\mu y)^2}{\phi} - \frac{V(y)}{\phi^2} - \frac{\overline{\Psi} \underline{\mathcal{P}} \Psi}{\phi^{3/2}} \right. \\ &\left. - \frac{m \overline{\Psi} \Psi}{\phi^2} - \frac{1}{4e^2} F^2 + \frac{\Lambda}{\phi^2} \right] \end{split}$$

now, $M_p(G_N)$, and α are fixed but particle masses scale with ϕ ,

 $m \sim 1/\phi^{1/2}$

the same is true for the Higgs expectation value,

$$G_F \sim \frac{1}{v^2} \sim 1/\phi$$

How could varying α affect BBN?

$$G_F^2 T^5 \sim \Gamma(T_f) \sim H(T_f) \sim \sqrt{G_N N} T_f^2$$

Recall in equilibrium,

$$\frac{n}{p} \sim e^{-\Delta m/T}$$

fixed at freezeout

Helium abundance,

$$Y \sim \frac{2(n/p)}{1 + (n/p)}$$

If T_f is higher, (n/p) is higher, and Y is higher

Limits on α from BBN

Contributions to Y come from n/p which in turn come from Δm_N

Contributions to Δm_N :

 $\Delta m_N \sim a \alpha_{em} \Lambda_{QCD} + b v$

Kolb, Perry, & Walker Campbell & Olive Bergstrom, Iguri, & Rubinstein

Changes in α , Λ_{QCD} , and/or vall induce changes in Δm_N and hence Y

$$\frac{\Delta Y}{Y} \simeq \frac{\Delta^2 m_N}{\Delta m_N} \sim \frac{\Delta \alpha}{\alpha} < 0.05$$

If $\Delta \alpha$ arises in a more complete theory the effect may be greatly enhanced:

$$\frac{\Delta Y}{Y} \simeq O(100) \frac{\Delta \alpha}{\alpha}$$
 and $\frac{\Delta \alpha}{\alpha} < \mathbf{few} \times 10^{-4}$

Approach:

Consider possible variation of Yukawa, h, or fine-structure constant, α

Include dependence of Λ on α ; of v on h, etc.

and with
$$\frac{\Delta h}{h} = \frac{1}{2} \frac{\Delta \alpha_U}{\alpha_U}$$

 $\frac{\Delta B_D}{B_D} = -[6.5(1+S) - 18R] \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta Q}{Q} = (0.1 + 0.7S - 0.6R) \frac{\Delta \alpha}{\alpha}$
 $\frac{\Delta \tau_n}{\tau_n} = -[0.2 + 2S - 3.8R] \frac{\Delta \alpha}{\alpha}$

Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum $\Delta h/h = 1.5 \times 10^{-5}$

 $\Delta \alpha / \alpha = 2 \Delta \mathbf{h} / \mathbf{h}, \mathbf{S} = 240.$

⁶LiBeB

For $\eta_{10} \approx 6$

 ${}^{6}\text{Li/H} \approx 10^{-14}$ ${}^{9}\text{Be/H} \approx 0.5 - 5 \times 10^{-19}$ ${}^{10}\text{B/H} \approx 2 \times 10^{-20}$ ${}^{11}\text{B/H} \approx 3 \times 10^{-16}$

Far Below the observed values in Pop II stars

⁶Li/H \approx few $\times 10^{-12}$ ⁹Be/H $\sim 1 - 10 \times 10^{-13}$ B/H $\sim 1 - 10 \times 10^{-12}$ These are not BBN produced.

GCR Nucleosynthesis

6Li

In the happy but not too distant past:

⁶Li (@ [Fe/H] ~ -2.3): HD 84937: ⁶Li/Li = 0.054 ± 0.011 BD 26°3578: ⁶Li/Li = 0.05 ± 0.03

SLN

Hobbs & Thorburn

Cayrel etal

cf. BBN abundance of about ${}^{6}\text{Li/H} = 10^{-14}$ or ${}^{6}\text{Li/Li} < 10^{-4}$

These data nicely accounted for by Galactic Cosmic Ray Nucleosynthesis

Problem 2: There appears to be a ⁶Li plateau

Possible Solutions

1. Particle decays - could solve both Li isotope problems

2. Cosmological Cosmic Rays

GCRN production of Be and B including primary and secondary sources

Summary

- D, He are ok -- issues to be resolved
- Li: 2 Problems
 - BBN ⁷Li high compared to observations
 - BBN ⁶Li low compared to observations
 ⁶Li plateau?
- Important to consider:
 - Depletion
 - Li Systematics T scale
 - Particle Decays?
 - Variable Constants?
 - PreGalactic production of ⁶Li (and BeB)