
Inflation- Cosmological Problems

Flatness Problem

Recall (with Λ = 0): 
k

R2
= H2(Ω − 1)

Divide by T2 and evaluate today:

k̂ =
k

R2
0T

2
0

= H2
0(Ω0 − 1)/T 2

0 < 2 x 10-58

Represents an initial condition on the Universe



Inflation- Cosmological Problems

Horizon Problem

Causal volume V ~ t3

but the Universe expands as t2/3 (matter dominated)

Today’s visible Universe contains  (for t at recombination)

(
t0

t
)3(

R

R0
)3 = (

t0

t
) ∼ 105

different causal horizon volumes.

Why is 
∆T

T
∼ 10−5



Inflation- Cosmological Problems

Perturbations Problem

Perturbations appear to have been 
produced outside our horizon.



Inflation- Cosmological Problems

Monopole Problem

The break-down of a GUT such as SU(5) to the SM with an 
explicit U(1) leads to the production of magnetic monopoles

The density of monopoles estimated by 1 
per horizon volume at the time of the 
transition nm ∼ (2tc)

−3

tc ∼ 10−2MP/T 2
cwith

so
nm

nγ

∼ (
10Tc

MP

)3

nm

nγ

< O(10−25)limit:



Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition



Phase Transitions

• Expect several phase transitions in the Early Universe
- GUTS: SU5 → SU(3) x SU(2) x U(1)
- SM: SU(2) x U(1) → U(1)
- possibly other non-gauged symmetry breakings

• Entropy production common result

• Type of inflation will depend on the order of the phase transition







Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition

Old Inflation

• Based on GUT symmetry breaking with a 
strong 1st order transition





Inflation

• Standard cosmology assumes an adiabatically 
expanding Universe, R ~ 1/T

• Phase transitions can violate this condition

Old Inflation

• Based on GUT symmetry breaking with a strong 1st 
order transition

• Universe becomes trapped in false vacuum
• Vacuum energy density act as a cosmological constant
• Transition proceeds by tunneling and bubble formation



Inflation

Λ  = 8 π GN V0 
For ρ << V0, 

H2 =
Ṙ2

R2
≈

8πGNV0

3
=

Λ

3

Ṙ

R
≈

√
Λ

3
; R ∼ eHtor

When the transition is over, the 
Universe reheats to T < V01/4  ~ Ti, 
but R >> Ri

Problem:  Transition never completes

For Hτ > 65, curvature problem solved





New Inflation

GUT transition a la Coleman-Weinberg

V (φ) = Aφ4(ln
φ2

v2
−

1

2
) + Dφ2 + V̂

A =
1

64π2v4
(
∑

B

gBm4
B −

∑

F

gFm4
F) =

5625

1025π2g4



New Inflation



Scalar Field Dynamics
Equations of motion

φ̈ + 3Hφ̇ +
∂V

∂φ
! φ̈ + 3Hφ̇ + m2(φ)φ = 0

For |m2| << H2

φ ∼ e|m2|t/3H

Field moves very little for a period

τ ∼ 3H/|m2|

Late time evolution
φ ∼

v

mt
sin mt

Reheating through particle decay

TR ∼ (ΓDMP)1/2



Slow Roll Conditions

Define:

22

Here H2 is given in terms of φ by the Friedmann Equation (90), and the parameter ε specifies the equation of state,

ε ≡ 3
2

(
p

ρ
+ 1

)
=

4π

m2
Pl

(
φ̇

H

)2

. (92)

It is a straightforward exercise to show that ε is related to the evolution of the Hubble parameter by

ε = −d lnH

d ln a
=

1
H

dH

dN
, (93)

where N is the number of e-folds (89). This is a useful parameterization because the condition for accelerated
expansion ä > 0 is simply equivalent to ε < 1. The de Sitter limit p→ −ρ is equivalent to ε→ 0, so that the potential
V (φ) dominates the energy density, and

H2 $ 8π

3m2
Pl

V (φ) . (94)

We make the additional approximation that the friction term in the equation of motion (85) dominates,

φ̈% 3Hφ̇, (95)

so that the equation of motion for the scalar field is approximately

3Hφ̇ + V ′ (φ) $ 0. (96)

Equation (96) together with the Friedmann Equation (94) are together referred to as the slow roll approximation.
The condition (95) can be expressed in terms of a second dimensionless parameter, conventionally defined as

η ≡ − φ̈

Hφ̇
= ε +

1
2ε

dε

dN
. (97)

The parameters ε and η are referred to as slow roll parameters, and the slow roll approximation is valid as long as
both are small, ε, |η|% 1. It is not obvious that this will be a valid approximation for situations of physical interest:
η need not be small for inflation to take place. Inflation takes place when ε < 1, regardless of the value of η. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
slow roll, we can use Eqs. (94, 96) to write the parameter ε approximately as

ε =
4π

m2
Pl

(
φ̇

H

)2

$ m2
Pl

16π

(
V ′ (φ)
V (φ)

)2

. (98)

The inflationary limit, ε% 1 is then just equivalent to a field evolving on a flat potential, V ′ (φ)% V (φ). The second
slow roll parameter η can likewise be written approximately as:

η = − φ̈

Hφ̇

$ m2
Pl

8π

[
V ′′ (φ)
V (φ)

− 1
2

(
V ′ (φ)
V (φ)

)2
]

, (99)

so that the curvature V ′′ of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (φ) of the field as:

N = −
∫

Hdt = −
∫

H

φ̇
dφ =

2
√

π

mPl

∫
dφ√

ε

$ 8π

m2
Pl

∫ φ

φe

V (φ)
V ′ (φ)

dφ, (100)

The limits on the last integral are defined such that φe is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value φ and φe.

and:
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only adjustable quantity is the choice of potential V (φ). For simplicity, we assume a flat spacetime,

gµν =





1
−a2(t)

−a2(t)
−a2(t)




, (83)

and the equation of motion for the field φ with a Lagrangian given by Eq. (79) is:

φ̈ + 3Hφ̇−∇2φ +
δV

δφ
= 0, (84)

where an overdot indicates a derivative with respect to the coordinate time t, and H = ȧ/a is the Hubble parameter.
We will be particularly interested in the homogeneous mode of the field, for which the gradient term vanishes, ∇φ = 0,
so that the the functional derivative δV/δφ simplifies to an ordinary derivative, and the equation of motion simplifies
to4

φ̈ + 3Hφ̇ + V ′ (φ) = 0. (85)

The stress-energy for a scalar field is given by

Tµν = ∂µφ∂νφ− gµνLφ, (86)

and, for a homogeneous field, it takes the form of a perfect fluid with energy density ρ and pressure p, with

ρ =
1
2
φ̇2 + V (φ) ,

p =
1
2
φ̇2 − V (φ) . (87)

We see that the de Sitter limit, p # −ρ, is just the limit in which the potential energy of the field dominates the
kinetic energy, φ̇2 $ V (φ). This limit is referred to as slow roll, and under such conditions the universe expands
quasi-exponentially,

a (t) ∝ exp
(∫

Hdt

)
≡ e−N , (88)

where it is conventional to define the number of e-folds N with the sign convention

dN ≡ −Hdt, (89)

so that N is large in the far past and decreases as we go forward in time and as the scale factor a increases.
This can be made quantitative by plugging the energy and pressure (87) into the Friedmann Equation

H2 =
(

ȧ

a

)2

=
8π

3m2
Pl

[
1
2
φ̇2 + V (φ)

]
, (90)

and the Raychaudhuri Equation, which we write in the convenient form
(

ä

a

)
= − 4π

3m2
Pl

(ρ + 3p) = H2 (1− ε) . (91)

4 The astute reader may well ask: if we are claiming inflation is a solution to the problems of flatness and homogeneity in the universe,
why are we assuming flatness and homogeneity from the outset? The answer is that, as long as inflation gets started somehow and
goes on for long enough, the late-time behavior of the field φ will always be described by Eq. (85). We will see later that we only
have observational access to the end of the inflationary period, and therefore a consistent theory of initial conditions is not required for
investigating the observational consequences of inflation.

with:
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Here H2 is given in terms of φ by the Friedmann Equation (90), and the parameter ε specifies the equation of state,
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both are small, ε, |η|% 1. It is not obvious that this will be a valid approximation for situations of physical interest:
η need not be small for inflation to take place. Inflation takes place when ε < 1, regardless of the value of η. We later
demonstrate explicitly that slow roll does in fact hold for interesting choices of inflationary potential. In the limit of
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The inflationary limit, ε% 1 is then just equivalent to a field evolving on a flat potential, V ′ (φ)% V (φ). The second
slow roll parameter η can likewise be written approximately as:
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so that the curvature V ′′ of the potential must also be small for slow roll to be a valid approximation. Similarly, we
can write number of e-folds as a function N (φ) of the field as:

N = −
∫
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∫
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The limits on the last integral are defined such that φe is a fixed field value, which we will later take to be the end
of inflation, and N increases as we go backward in time, representing the number of e-folds of expansion which take
place between field value φ and φe.

Require: ε and η to be small
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so that the curvature V ′′ of the potential must also be small for slow roll to be a valid approximation. Similarly, we
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The limits on the last integral are defined such that φe is a fixed field value, which we will later take to be the end
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# of e-folds:
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Density Fluctuations

During the slow-roll, density fluctuations are produced

δρ

ρ
= 4Hδτ =

H2

π3/2φ̇
= (

8λ

3π2
)1/2 ln3/2(Hk−1)

Guth & Pi
∝ ∆(k)

Power spectrum ∆2(k) = ∆2(k∗)(
k

k∗
)n−1

n ! 1− 6ε + 2η ngrav ! −2ε

r !
∆2

grav(k∗)
∆2(k∗)

! 16ε





Density Fluctuations

During the slow-roll, density fluctuations are produced

δρ

ρ
= 4Hδτ =

H2

π3/2φ̇
= (

8λ

3π2
)1/2 ln3/2(Hk−1)

Kill models of new inflation based on SU(5) symmetry breaking

⇒ Inception of the Inflaton

Many new models of inflation become possible
• Primordial, chaotic, hybrid, natural, R2, eternal, 
stochastic, power-law, KK, assisted, .....



Generic Inflation

V (φ) = µ4V (φ/MP )

Density fluctuations are roughly:
δρ

ρ
∼ O(100)

µ2

M2
P

which can be used to fix μ
µ2

M2
P

∼ few × 10−8

which in turns determines the Hubble parameter during inflation,
the duration of inflation, and the reheat temperature.



Chaotic Inflation

Very simple potentials of the form:

V (φ) = m2φ2 or V (φ) = λφ4



Chaotic Inflation



Chaotic Inflation

Very simple potentials of the form:

V (φ) = m2φ2 or V (φ) = λφ4

ε = 1/60
η = 1/40
n = .95
r = .27

ε = 1/120
η = 1/120

n = .97
r = .13



WMAP constraints on inflationary models– 26 –

Fig. 10.— Two-dimensional marginalized constraints (68% and 95% confidence levels) on inflationary pa-
rameters r, the tensor-to-scalar ratio, and ns, the spectral index of fluctuations, defined at k0 = 0.002/Mpc.
One-dimensional 95% upper limits on r are given in the legend. Left: The five-year WMAP data places
stronger limits on r (shown in blue) than three-year data (grey). This excludes some inflationary models
including λφ4 monomial inflaton models with r ∼ 0.27, ns ∼ 0.95 for 60 e-folds of inflation. Right: For
models with a possible running spectral index, r is now more tightly constrained due to measurements of
the third acoustic peak. Note: the two-dimensional 95% limits correspond to ∆(2 lnL) ∼ 6, so the curves
intersect the r = 0 line at the ∼ 2.5σ limits of the marginalized ns distribution.

4. Extended cosmological models with WMAP

The WMAP data place tight constraints on the simplest ΛCDM model parameters. In this section we
describe to what extent WMAP data constrain extensions to the simple model, in terms of quantifying the
primordial fluctuations and determining the composition of the universe beyond the standard components.
Komatsu et al. (2008) present constraints for WMAP combined with other data, and offer a more detailed
cosmological interpretation of the limits.

4.1. Primordial perturbations

4.1.1. Tensor fluctuations

In the ΛCDM model, primordial scalar fluctuations are adiabatic and Gaussian, and can be described
by a power law spectrum,

∆2
R(k) ∝

(

k

k0

)ns−1

, (14)

producing CMB angular power spectra consistent with the data. Limits can also be placed on the amplitude
of tensor fluctuations, or gravitational waves, that could have been generated at very early times. They
leave a distinctive large-scale signature in the polarized B-mode of the CMB (e.g., Basko & Polnarev (1980);
Bond & Efstathiou (1984)), that provides a clean way to distinguish them from scalar fluctuations. However,



• In the Solar System?
• In the Galaxy?

– in cosmic rays antimatter is secondary
– antiHelium - never observed

Anti-matter in the Universe

• On Earth?  
• On the Moon?

H̄e = p̄p̄n̄n̄
• Anywhere?



Baryogenesis
The Baryon asymmetry

• Goal:  To calculate η from microphysics

• Problem: In baryon symmetric universe the baryon density is 
determined by freeze-out of annihilations

nB

nγ

=
nB̄

nγ

For T >> mN, nB

nγ

∼ O(1)

For T < mN,
nB

nγ

∼ (
mN

T
)3/2e−mN/T



Baryogenesis
The Baryon asymmetry

Compute Freeze-out

Annihilations: σv ∼
1

m2
π

Rate: Γ = nσv ∼
m3/2

N T 3/2

m2
π

e−mN/T

Compare to expansion rate: H ∼
T 2

MP

Freeze-out at T/mN ~ 1/45 

nB

nγ

=
nB̄

nγ

∼ 10−19



The Sakharov Conditions

To generate an asymmetry:

1.Baryon Number Violating Interactions

2.C and CP Violation

3.Departure from Thermal equilibrium

1. and 2. are contained in GUTs 
3. is obtained in an expanding Universe



Grand Unified Theories

X

e _

d

X

u

u

_

_

In SU(5), there are gauge (and Higgs) bosons which mediate baryon 
number violation.  Eg.,

ΔB = + 1/3 ΔB = - 2/3



Out-of-equilibrium decay

Decay rate: Γ ! αMX

But decays occur only when Γ > H

αMX > N(T )1/2T 2/MP

or
T 2 < αMXMPN(T )−1/2.

Out-of-equilibrium if Γ < H at T ~ MX 

Require MX > αMP(N(MX))−1/2



Out-of-equilibrium decay

Big Bang Baryogenesis 17

where the first term is the common symmetry factor and the decay rate is

Γ =
1

2MX

∫

WdΠ1dΠ2 (59)

with

dΠ =
gd3p

(2π)32E
(60)

for g degrees of freedom. Denote the parity (P) of the states (1) and (2) by ↑ or ↓,
then we have the following transformation properties:

Under CPT : Γ (X → 1 ↑) = Γ (1̄ ↓→ X̄)
Under CP : Γ (X → 1 ↑) = Γ (X̄ → 1̄ ↓)
Under C : Γ (X → 1 ↑) = Γ (X̄ → 1̄ ↑)

(61)

We can now denote

r = Γ (X → 1 ↑) + Γ (X → 1 ↓) (62)

r̄ = Γ (X̄ → 1̄ ↑) + Γ (X̄ → 1̄ ↓) (63)

The total baryon number produced by an X , X̄ decay is then

∆B = −
2

3
r +

1

3
(1 − r) +

2

3
r̄ −

1

3
(1 − r̄)

= r̄ − r = Γ (X̄ → 1̄ ↑) + Γ (X̄ → 1̄ ↓) − Γ (X → 1 ↑) − Γ (X → 1 ↓) (64)

One sees clearly therefore, that from eqs. (61) if either C or CP are good symmetries,
∆B = 0.

In the out-of-equilibrium decay scenario [18], the total baryon asymmetry pro-
duced is proportional to ∆B = (r̄− r). If decays occur out-of-equilibrium, then at the
time of decay, nX ≈ nγ at T < MX . We then have

nB

s
=

(∆B)nX

s
∼

(∆B)nX

N(T )nγ
∼ 10−2(∆B) (65)

The schematic view presented above can be extended to a complete calculation
given a specific model [19, 20], see also [21] for reviews. It makes sense to first consider
the simplest GUT, namely SU(5) (for a complete discussion of GUTs see [22]. In
SU(5), the standard model fermions are placed in a 5̄ and 10 representation of SU(5)













dc
1

dc
2

dc
3

e
ν













L

= 5̄













0 uc
3 −uc

2 −u1 −d1

0 uc
1 −u2 −d2

0 −u3 −d3

0 −ec

0













L

= 10 (66)

where the subscripts are SU(3)-color indices. The standard model gauge sector is
augmented by the color triplet X and Y gauge bosons which form a doublet under
SU(2)L and have electric charges ±4/3 and ±1/3 respectively. The full set of 24 gauge
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2.3 The Affleck-Dine Mechanism

Another mechanism for generating the cosmological baryon asymmetry is the decay
of scalar condensates as first proposed by Affleck and Dine[31]. This mechanism is
truly a product of supersymmetry. It is straightforward though tedious to show that
there are many directions in field space such that the scalar potential given in eq. (86)
vanishes identically when SUSY is unbroken. That is, with a particular assignment of
scalar vacuum expectation values, V = 0 in both the F− and D− terms. An example
of such a direction is

uc
3 = a sc

2 = a − u1 = v µ− = v bc
1 = eiφ

√

v2 + a2 (93)

where a, v are arbitrary complex vacuum expectation values. SUSY breaking lifts this
degeneracy so that

V " m̃2φ2 (94)

where m̃ is the SUSY breaking scale and φ is the direction in field space correspond-
ing to the flat direction. For large initial values of φ, φo ∼ Mgut, a large baryon
asymmetry can be generated[31, 32]. This requires the presence of baryon number vi-
olating operators such as O = qqql such that 〈O〉 &= 0. The decay of these condensates
through such an operator can lead to a net baryon asymmetry.

In a supersymmetric gut, as we have seen above, there are precisely these types of
operators. In figure 13, a 4-scalar diagram involving the fields of the flat direction (93)
is shown. Again, G̃ is a (light) gaugino. The two supersymmetry breaking insertions
are of order m̃, so that the diagram produces an effective quartic coupling of order
m̃2/(φ2

o + M2
X).

Fig. 13. Baryon number violating diagram involving flat direction fields.

The baryon asymmetry produced, is computed by tracking the evolution of the
sfermion condensate, which is determined by

φ̈ + 3Hφ̇ = −m̃2φ (95)

V (φ) = m̃2φφ∗ +
1
2
iλ(φ4 − φ∗4)
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where µ =
∑

µνi . In (107), the constraint on the weak isospin charge, Q3 ∝ µW = 0
has been employed. Though the charges B, L, and Q have been written as chemical
potentials, since for small asymmetries, an asymmetry (nf − nf̄ )/s ∝ µf/T , we can
regard these quantities as net number densities.

The sphaleron process yields the additional condition,

9µuL + µ = 0 (108)

which allows one to solve for L and B − L in terms of µuL , ultimately giving

B =
28

79
(B − L) (109)

Thus, in the absence of a primordial B − L asymmetry, the baryon number is erased
by equilibrium processes. Note that barring new interactions (in an extended model)
the quantities 1

3B − Le, 1
3B − Lµ, and 1

3B − Lτ remain conserved.
With the possible erasure of the baryon asymmetry when B − L = 0 in mind,

since minimal SU(5) preserves B − L, electroweak effects require guts beyond SU(5)
for the asymmetry generated by the out-of-equilibrium decay scenario to survive. Guts
such as SO(10) where a primordial B − L asymmetry can be generated becomes a
promising choice. The same holds true in the Affleck-Dine mechanism for generating
a baryon asymmetry. In larger guts there are baryon number violating operators and
associated flat directions[38]. A specific example in SO(10) was worked out in detail
by Morgan[39].

An important question remaining to be answered is whether or not the baryon
asymmetry can in fact be generated during the electroweak weak phase transition.
This has been the focus of much attention in recent years. I refer the reader to the
review of ref. [34]. In the remainder of these lectures, I will focus on alternative means
for generating a baryon asymmetry which none-the-less makes use of the sphaleron
interactions.

The above argument regarding the erasure of a primordial baryon asymmetry
relied on the assumption that all particle species are in equilibrium. However, because
of the extreme smallness of the electron Yukawa coupling, eR does not come into
equilibrium until the late times. The eR decoupling temperature is determined by the
rate of eR → eL + H transitions and comparing this rate to the expansion rate

ΓLR =
πh2

e

192ζ(3)

m2
H

T
∼

20T 2

MP
% H (110)

which gives T = T∗ ∼ O(few) TeV. Thus one may ask the question, whether or not
the baryon asymmetry may be stored in a primordial eR asymmetry [40]. Because
sphalerons preserve B−L, any lepton number stuck in eR is accompanied by an equal
baryon number. However, at temperatures below the eR decoupling temperature,
baryon number will begin to be destroyed so long as sphalerons are in equilibrium.
Sphalerons are in equilibrium from about the electroweak phase transition to T ∼ 1012

GeV [33]. As it turns out, the eR (baryon) asymmetry is exponentially sensitive to
parameters of the model.


