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Outline
Lecture #1: An introduction to Bayesian statistical methods
Role of probability in data analysis (Frequentist, Bayesian)
A simple fitting problem : Frequentist vs. Bayesian solution
Bayesian computation, Markov Chain Monte Carlo

Setting limits / making a discovery

Lecture #2: Multivariate methods for HEP
Event selection as a statistical test
Neyman-Pearson lemma and likelihood ratio test
Some multivariate classifiers:
Boosted Decision Trees

Support Vector Machines
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A simulated SUSY event in ATLAS

high p_jets

of hadrons

missing transverse energy
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Background events

ATLAS Atlantis Event: myFiles? 8.4.0 3026 798902

This event from Standard
Model ttbar production also
has high p_jets and muons,

and some missing transverse
energy.

— can easily mimic a SUSY event.
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[LHC data

At LHC, ~10° pp collision events per second, mostly uninteresting

do quick sifting, record ~200 events/sec

single event ~ 1 Mbyte

1 “year” = 10’ s, 10" pp collisions / year

2 x 10” events recorded / year (~2 Pbyte / year)

For new/rare processes, rates at LHC can be vanishingly small
e.g. Higgs bosons detectable per year could be ~10°
— 'needle in a haystack’

For Standard Model and (many) non-SM processes we can generate
simulated data with Monte Carlo programs (including simulation
of the detector).

Glen Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis



A simulated event
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Multivariate event selection

-

Suppose for each event we measure a set of numbers X=(x,,...,x,)
X = jet JZ
X, = missing energy

x, = particle 1.d. measure, ...

x follows some n-dimensional joint probability density, which

~/

depends on the type of event produced, 1.e., was it pp—tt, pp—gg,...

p(F|H ) DN

x; A RS ‘,I* 4 / E.g. hypotheses (class labels) H , H ,
.-z.;; “ , Often simply “signal”, “background”
,:3-3}4. ‘1“ We want to separate (classify) the
4 .. o event types in a way that exploits the
p(%|H,) X, information carried in many variables.
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Finding an optimal decision boundary

Maybe select events with “cuts”:

X <C,
i i

X <C,
J J

Goal of multivariate analysis 1s to do this in an “optimal” way.
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Test statistics

The decision boundary 1s a surface in the n-dimensional space of
input variables, e.g., y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T
The decision boundary Y cut
is now effectively a single 5 | PPt ap rejectBy
cut on y(x), dividing A
: 1. [ & -
X-space into two 7 |
: . f()/| O> A |I E'x / f<y|H1>
regions: o5 £ =]\ /,,r o
R (accept H) | ‘
, (accept H, L \:F{___ U
R1 (reject HO) 0 ! 2 3 4 5
y{x)
9
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given
significance level), choose the acceptance region for signal such that

where c 1s a constant that determines the signal efficiency.

Equivalently, the optimal discriminating function is given by the

likelihood ratio: y (35): P(}|S)
p(X[b)

N.B. any monotonic function of this 1s just as good.

Glen Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis

10



Neyman-Pearson doesn't always help

The problem 1s that we usually don't have explicit formulae for the pdfs

p(xls), p(xIb), so for a given x we can't evaluate the likelithood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate ¥~ p(X|s) > X Xy / events of known type

- - - -

generate X~ p(xlb) — > X ..., Xy

b

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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General considerations

In all multivariate analyses we must consider e.g.

Choice of variables to use

Functional form of decision boundary (type of classifier)
Computational issues

Trade-off between sensitivity and complexity

Trade-off between statistical and systematic uncertainty

Our choices can depend on goals of the analysis, e.g.,

Event selection for further study
Searches for new event types
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Decision boundary tlexibility

The decision boundary will be defined by some free parameters that

we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data
SO as to best separate between the event types for an unseen data sample.

overtraining ~ boundary too rigid good trade-off

Glen Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis 13



Some “‘standard’” multivariate methods

Place cuts on individual variables
Simple, intuitive, in general not optimal

Linear discriminant (e.g. Fisher)
Simple, optimal if the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xls), p(xIb) then use y(X)=p(x|s)/ p(x|b).

In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intuitive.
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Decision trees

In a decision tree repeated cuts are made on a single variable
until some stop criterion is reached.

The decision as to which variable is used 1s
based on best achieved improvement

in signal purity: >
4/37

Zsignal Wl 2 02 G'E"Vr

P= -

Zsignal Wi_l_ Zbackground Wi 39/1

< 500 cm
where w . 1s the weight of the ith event. - >
l

7/1 2/9

Iterate until stop criterion reached,

based e.g. on purity and minimum o .
Example by MiniBooNE experiment,

number of events in a node. B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if x€&signal region , — 1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that 1s more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.
Suppose we have a training sample 7" consisting of N events with

X ... X~ event data vectors (each x multivariate)

Y peees ¥ tUC class labels, +1 for signal, —1 for background
W, W event weights

1

Now define a rule to create from this an ensemble of training samples

T g TZ, .... , derive a classifier from each and average them.
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AdaBoost

A successful boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

X ... X~ event data vectors

Yoy, rue class labels (+1 or -1)

(D

W event weights

107 N

with the weights equal and normalized such that Z WEI) =1.
i=1
Train the classifier f (x) (e.g. a decision tree) using the weights w'”

so as to minimize the classification error rate,

N
6122 W§1)1<yifl<xi><0>’
i=1

where I(X) = 1 1f X 1s true and 1s zero otherwise.
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Updating the event weights (AdaBoost)

Assign a score to the kth classifier based on its error rate:

l—e¢,

«,=In
Sy

Define the training sample for step k+1 from that of £ by updating
the event weights according to

=0 [ (x;) vl
Lk o S filxi) il
l l Zk
/ Pl ¥ Normalize so that
i =eventindex k= training sample index Z W§k+1): 1

I

Iterate K times, final classifieris f (x Z o, f.(x,T,)
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BDT example from MiniBooNE

~200 1nput variables for each event (v interaction producing e, |L or T).

Each individual tree is relatively weak, with a misclassification
error rate ~ 0.4 —0.45

_l | 1 1 | | | 1 | | | | | | | 1 | | I |
1 1 e un-weighted misclassified event rate 3
0.8 1 a weighted nusclassified event rate. e :
. 1 x o_=p*In((l-ex_)er ). f=0.7
S 06 capintl, B SGEE. . Mo K GF @ ]
B ]
044
0.2 —:
0 _| | [ | | |
( 200 400 600 800 1000

Number of Tree [terations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

Training MC Samples .VS. Testing MC Samples

From MiniBooNE

example
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Boosted decision tree summary

Advantage of boosted decision tree is it can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

If a tree has only a few leaves it 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost,...)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classifier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick” one does not every have to write down
explicitly the feature space transformation.

Some references for kernel methods and SVMs:

The books mentioned in www. pp. r hul . ac. uk/ ~cowan/ mai nz_| ect ur es. ht n

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research. m crosoft. conf ~cburges/ papers/ SVMrut ori al . pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.
The TMV A manual (!)
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LLinear SVMs

Consider a training data set consisting of

X ... X~ event data vectors
s ¥, true class labels (+1 or —1)

Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “bias”). We have

X wt+b=+1 for all y = +1

X wt+tb<s—1 forall y =-1

or equivalently

y.(x,w+b)—1=0 forall i =
Bishop Ch. 7
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Margin and support vectors

The distance between the hyperplanes defined by y(x) = +1 and y(x) = —1
1s called the margin, which 1s:

. 2
margin =——-
]

If the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this 1s equivalent to defining

the scale of w). These points are called support vectors.

Glen Cowan CERN-JINR 2009 Summer School / Topics in Statistical Data Analysis

25



Linear SVM classifier

We can define the classifier using
y(x)=sign(x-w+b)

which 1s +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

. 2
margin =——

S 2 : .
we can minimize ||w|| subject to the constraints

y.(x; w+b)—1=0 forall i
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

1 N
L=21bwlP = e (v, w+6)=1)

i=1

\

positive Lagrange multipliers o,

We need to minimize L with respect to w and b and maximize

with respect to o

There is an o for every training point. Those that lie on the margin
(the support vectors) have ¢ > 0, all others have o = 0. The solution

can be written (sum only contains

w:ZO(iyixi
i

support vectors)
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Dual formulation

The classifier function 1s thus

y(x)=sign(x-w+b)=sign

Z (xl.yl.x-xl.er)

It can be shown that one finds the same solution a by minimizing
the dual Lagrangian

|
LD:Z O(i_zz XXy, VX X
i i,

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables E«*i:

yi('xi.w_l_b)_l_gi_lZOWithgiZO for all i

Thus the training point x_ 1s allowed to

be up to a distance &i on the wrong side
of the boundary, and ﬁi = ( at or on the

right side of the boundary.

For an error to occur we have £ > 1, so
l
2
j

1s an upper bound on the number of training errors.
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Cost function for nonseparable case

To limit the magnitudes of the ii we can define the error function that

we minimize to determine w to be

1
E(w)=Lwlf+C

e

where C 1s a cost parameter we must choose that limits the amount

of misclassification. It turns out that for k=1 or 2 this is a quadratic
programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian
_ 1
LD_Z O(i_z Z XX Y Y X; X
i i, J

where the constraints on the o become O< o, <C.
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know 1s useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

-

¢ (x)=(@,(x),....0,(x))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with @(x) appearing in the place of x.
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier 1s

y(x)=sign

Z‘Xz’yix'xi_l'b)

so 1n the feature space this becomes

y(x)=sign

> a,-y,-cﬁ<x>-<7)<xi>+b)
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

—_ —

K(x,x")=¢(x)@(x’)
Functions having this property must satisfy Mercer's condition

| K(x,x")g(x)g(x")dxdx">0

for any function g where f g’(x)d x is finite.

So we don't even need to find explicitly the feature space transformation

d(x), we only need a kernel.
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Finding kernels

There are a number of techniques for finding kernels, e.g., constructing
new ones from known ones according to certain rules (cf. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(x,x')=(x-x'+0)" polynomial

—|lx—x"I
7 o2 Gaussian

K(x,x')=exp

K(x,x')=tanh(k(x'x')+60)  sigmoidal
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Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the o of the Gaussian)
the cost parameter C (plays role of regularization parameter)

The training 1s relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.
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SVM in HEP

SVMs are very popular in the Machine Learning community but have

yet to find wide application in HEP. Here is an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTATO2).

1 7 : L e
. g g 7
signal o ?
eff. ke

0.4 06 0.8 1
background eff.
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Multivariate analysis discussion
For all methods, need to check:

Sensitivity to statistically unimportant variables
(best to drop those that don’t provide discrimination);

Level of smoothness in decision boundary (sensitivity
to over-traimning)

Given the test variable, next step 1s e.g., select # events and
estimate a cross section of signal: 65 = (n —b)/esL

Now need to estimate systematic error...

[f e.g. training (MC) data = Nature, test variable 1s not optimal,
but not necessarily biased.

But our estimates of background » and efficiencies would then
be biased if based on MC. (True also for ‘simple cuts’.)
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Multivariate analysis discussion (2)

But 1n a cut-based analysis it may be easier to avoid regions
where untested features of MC are strongly influencing the
decision boundary.

Look at control samples to test joint distributions of inputs.

Try to estimate backgrounds directly from the data (sidebands).

The purpose of the statistical test 1s often to select objects for
further study and then measure their properties.

Need to avoid mput variables that are correlated with the
properties of the selected objects that you want to study.
(Not always easy; correlations may be poorly known.)
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Software for multivariate analysis

TIWA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From t nva. sour cef or ge. net , also distributed with ROOT
Variety of classifiers
Good manual

St at Pat t er nRecogni ti on, I. Narsky, physics/0507143

Further info from ww. hep. cal t ech. edu/ ~nar sky/ spr. ht nl
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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Comparing multivariate methods (TMVA)

Background rejection versus Signal efficiency

TMVA
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Summary

Boosted Decision Trees and Support Vector Machines are two examples
of relatively modern developments in Machine Learning that are only
recently attracting attention in HEP.

There are now many multivariate methods on the market and it 1s
difficult to make general statements about performance; this 1s often
very specific to the problem.

Expect advanced multivariate methods to have a major impact in areas
where one struggles for statistical significance, not in precision
measurements.

A simpler (e.g. “cut-based”) analysis may be considered more robust,
but e.g. a 56 signal from an SVM supported by 46 from cuts may win.

Fortunately tools to investigate these methods are now widely available.
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Quotes I like

“Keep it simple.
As simple as possible.
Not any simpler.”

— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Boosted decision tree example

First use of boosted decision trees in HEP was for particle identification
for the MiniBoone neutrino oscillation experiment.

H.J.Yang, B.P. Roe, J. Zhu, “Studies of Boosted Decision Trees for
MiniBooNE Particle Identification”, Physics/0508045, Nucl. Instum. & Meth.
A 555(2005) 370-385.

B.P. Roe, HJ. Yang, J. Zhu, Y. Liu, 1. Stancu, G. McGregor, "Boosted decision
trees as an alternative to artificial neural networks for particle identification”,
physics/0408124, NIMA 543 (2005) 577-584.
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Particle 1.d.

Search for Vu to v oscillations

required particle 1.d. using
information from Cherenkov
detector.

Large number (~200) input
variables measured for each
event.

in MiniBooNE

Electron candidate
fuzzy ring, short track

w
SN

Muon candidate
sharp ring, filled in
"\‘Ill'l*m S - on d--*""'_/l_

w

Pion candidate
_two "e-like" rings

ﬁlh S -"'J'J\;{
“ o

H.J. Yang, MiniBooNE PID, DNP06
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MiniBoone boosted decision tree

Here performance stable after a few hundred trees
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MiniBooNE Decision tree performance

1o AdaBoost(3=0.5, 8 leaves) f'
~€ /& 167 L i i
b b 1+ AdaBoost(3=0.5, 20 leaves) § & ¢
LE: E tHIB=0.5 45 lezves) ff ;.* fi

1.2 s AdaBoost(p=0.5, 100 leave ;;

Relative Ratio

20 30 40 50 60 70 80
Signal Efficiency (%)
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the

update rule for the tree weight.

Glen Cowan
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AdaBoost study with linear classifier

J. Sochman, J. Matas, cnp. fel k. cvut. cz

Start with a problem for which a linear classifier 1s weak:
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AdaBoost study with linear classifier

J. Sochman, J. Matas, cnp. fel k. cvut.cz
t=6
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training error
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Impertect pdf estimation

What if the approximation we use (e.g., parametric form, assumption
of variable independence, etc.) to estimate p(x) 1s wrong?

If we use poor estimates to construct the test variable

_P(X|H,)

S TE 7R

then the discrimination between the event classes will not be optimal.

But can this cause us e.g. to make a false discovery?

Even if the estimate of p(x) used in the discriminating variable are
imperfect, this will not atfect the accuracy of the distributions f(ylH ),

f(yIH 1); this only depends on the reliability of the training data.
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Using the classifier output for discovery

signal
search
A A .
J) N(y) e region
background background
excess?
\ >
y y cut y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis. Maximize the probability of this
happening by setting y _for maximum sAb (roughly true).
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Controlling talse discovery

So for a reliable discovery what we depend on 1s an accurate estimate
of the expected number of background events, and this accuracy only

depends on the quality of the training data; works for any function y(x).

But we do not blindly rely on the MC model for the training data for
background; we need to test it by comparing to real data in control
samples where no signal 1s expected.

The ability to perform these tests will depend on on the complexity of
the analysis methods.
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