Flavor physics

Yuval Grossman

Cornell

Y. Grossman

Flavor physics (3)

Extra HW

You can find some notes and HW at

www.lepp.cornell.edu/~yuvalg/p645

Yesterday...

- Parameter counting
- The CKM matrix and its determination
- Started meson mixing

Today we will talk about meson mixing and CPV

Meson mixing

Flavor physics (3)

Meson mixing

$$|f_1\rangle(t) = \exp\left[i\Delta Et/2\right]|1\rangle + \exp\left[-i\Delta Et/2\right]|2\rangle$$

The probability to measure flavor f_i at time t is

$$\left|\langle f_1 | f_1 \rangle\right|^2 = \frac{1 + \cos \Delta Et}{2}$$
$$\left|\langle f_1 | f_2 \rangle\right|^2 = \frac{1 - \cos \Delta Et}{2}$$

- Oscillations with frequency ΔE
- In the rest frame it is just Δm
- The relevant time scale is $x \equiv \Delta m / \Gamma$

Calculations of Δm

- There are 4 neutral mesons: $K(\bar{s}d)$, $B(\bar{b}d)$, $B_s(\bar{b}s)$, $D(c\bar{u})$
 - Why not charged mesons?
 - Why not the neutral pion?
 - Why not the K^*
- The two flavor eigenstate *B* and \overline{B} mix via the weak interactions. It is an FCNC process $m_{weak} = A(B \rightarrow \overline{B})$
- In the SM it is a loop process, and it gives an effect that is much smaller than the mass

$$M = \begin{pmatrix} m_B & m_{weak} \\ m_{weak} & m_B \end{pmatrix} \Rightarrow M_{H,L} = m_B \pm m_{weak}/2$$
$$\Delta M = m_{weak}$$

Y. Grossman

Flavor physics (3)

The box diagram

In the SM the mixing is giving by the box diagram

The result is

$$\Delta M \propto \sum_{i,j} V_{is} V_{id}^* V_{js} V_{jd}^* f(m_i, m_j)$$

 \checkmark To leading order $f \sim m_i^2/m_W^2$ so for K mixing m_c^2/m_W^2 suppression

Y. Grossman

Flavor physics (3)

Meson mixing: remarks

- Mixing can be used to determined magnitude of CKM elements. The heavy fermion is the dominant one. For example *B* mixing is used to get |V_{td}|
- There are still hadronic uncertainties. We calculate at the quark level and we need the meson. Lattice QCD is very useful here
- My treatment was very simplistic, there are more effects
- Each meson have its own set of approximations

Meson mixing

In general we have also width different between the two eigenstates. They are due to common final states.

$$x \equiv \frac{\Delta m}{\Gamma} \qquad y \equiv \frac{\Delta \Gamma}{2\Gamma}$$

K
$$x \sim 1$$
 $y \sim 1$ D $x \sim 10^{-2}$ $y \sim 10^{-2}$ B_d $x \sim 1$ $y \sim 10^{-2}$ B_s $x \sim 10$ $y \sim 10^{-1}$

Y. Grossman

Flavor physics (3)

Mixing measurements

How this is done?

- Need the flavor of the initial state. Usually the mesons are pair produced
 - Same side tagging $(D^* \rightarrow D\pi)$
 - Other side tagging (semileptonic *B* decays)
- The final flavor
 - Use time dependent (easier for highly boosted mesons)
 - Use time integrated signals
 - The final state may not be a flavor eigenstate, but we still can have oscillations as long as it is not a mass eigenstate

CPV

Flavor physics (3)

What is CP

- A symmetry between a particle and its anti-particle
- CP is violated if we have

$$\Gamma(A \to B) \neq \Gamma(\bar{A} \to \bar{B})$$

- It is a very small effect in Nature, and thus sensitive to NP
- In the SM it is closely related to flavor
- We do not discuss the strong CP problem that is not directly related to flavor
- We also do not discuss the need for CP for baryogenesis

How to find CPV

It is not easy to detect CPV

- Always need interference of two (or more) amplitudes
- CPT implies that the total widths of a particles and it anti-particles are the same, so we need at least two modes with CPV
- To see CPV we need 2 amplitudes with different weak and strong phases

All these phases

- Weak phase (CP-odd phase)
 - Phase in \mathcal{L}
 - In the SM they are only in the weak part so they are called weak phases

$$CP(Ae^{i\phi}) = Ae^{-i\phi}$$

Strong phase

 Strong phase (CP-even phase). Do not change under CP

$$CP(Ae^{i\delta}) = Ae^{i\delta}$$

Due to time evolution

$$\psi(t) = e^{iHt}\psi(0)$$

- They are also due to intermediate real states, and have to do with "rescattering" of hadrons
- Such strong phases are very hard to calculate

Why we need the two phases?

Intuitive argument

- If we have only one $|A|^2 = |\bar{A}|^2$
- Two but with a different of only weak phase

$$\left|A + be^{i\phi}\right|^2 = \left|A + be^{-i\phi}\right|^2$$

When both are not zero it is not the same (do it for HW!)

CPV remarks

- The basic idea is to find processes where we can measure CPV
- In some cases they are clean so we get sensitivity to the phases of the UT (or of the CKM matrix)
- We can be sensitive to the CP phase without measuring CP violation
- Triple products and EDMs are also probes of CPV. I will not talk about that
- So far CPV was only found in meson decays, K_L , B_d and B^{\pm} , and we will concentrate on that

The three classes of CPV

We need to find processes where we have two interfering amplitudes

- Two decay amplitudes
- Two oscillation amplitudes
- One decay and one oscillation amplitudes

Where the phases are coming from?

- Weak phases from the decay or mixing amplitudes (SM or NP)
- Strong phase is the time evolution (mixing) or the rescattering (decay)

The 3 classes

1: Decay 2: Mixing 3: Mixing and decay

Y. Grossman

Flavor physics (3)

Type 1: CPV in decay

Two decay amplitudes

$$|A(B \to f)| \neq |A(\bar{B} \to \bar{f})|$$

The way to measure it is via

$$a_{CP} \equiv \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)} = \frac{|\bar{A}/A|^2 - 1}{|\bar{A}/A|^2 + 1}$$

• If we write
$$A = A (1 + r \exp[i(\phi + \delta)])$$

$$a_{CP} = r\sin\phi\sin\delta$$

- We like r, δ and ϕ to be large
- Work for decays of both charged and neutral hadrons

Y. Grossman

Flavor physics (3)

CPV in decay, example: $B \rightarrow K\pi$

P is a loop amplitude, but due to CKM factors $P/T \sim 3.$ We also have a strong phase difference

Y. Grossman

Flavor physics (3)

One more example: $B \rightarrow DK$

- A bit ore "sophisticated" example of CPV in decay
- Theoretically by far the cleanest measurement of any CKM parameter

Mixing formalism with CPV

When there is CPV the mixing formalism is more complicated. Diagonalizing the Hamiltonian we get

$$B_{H,L} = p|B\rangle \pm q|\bar{B}\rangle$$

- In general B_H and B_L are not orthogonal
- This is because they are "resonances" not asymptotic states. Open system
- The condition for the non orthogonality is CPV

2: CPV in mixing

The second kind of CPV is when it is pure in the mixing

$$|q| \neq |p|$$
 $(B_{H,L} = p|B\rangle \pm q|\bar{B}\rangle)$

We measure it by semileptonic asymmetries

It was measured in

$$\frac{\Gamma(K_L \to \pi \ell^+ \nu) - \Gamma(K_L \to \pi \ell^- \bar{\nu})}{\Gamma(K_L \to \pi \ell^+ \nu) + \Gamma(K_L \to \pi \ell^- \bar{\nu})} = (3.32 \pm 0.06) \times 10^{-3}$$

This is so far the only way we can define the electron microscopically!

3: CPV in interference mixing & decay

Interference between decay and mixing amplitudes

$$A(B \to f_{CP}) \qquad A(B \to \overline{B} \to f)$$

- Best with one decay amplitude
- Very useful when f is a CP eigenstate
- In that case $|A(B \to f_{CP})| = |A(\bar{B} \to f_{CP})|$

Some definitions

$$\lambda \equiv \frac{q}{p} \frac{A}{A}$$

In the case of a CP final state

- $|\lambda| \neq 1$ because $|A| \neq |\overline{A}|$. CPV in decay
- $|\lambda| \neq 1$ because $|q| \neq |p|$. CPV in mixing
- The cleanest case $|\lambda| \approx 1$ and $Im(\lambda) \neq 0$. Interference between mixing and decay
- We can have several classes at the same time
- In the clean cases we have one dominant source

Formalism

B at t = 0 compared to a \overline{B} and let them evolve

$$a_{CP}(t) \equiv \frac{\Gamma(B(t) \to f) - \Gamma(\bar{B}(t) \to f)}{\Gamma(B(t) \to f) + \Gamma(\bar{B}(t) \to f)}$$

Consider the case where $|\lambda| = 1$

$$A_{CP}(t) = -Im\lambda\sin\Delta mt$$

- We know Δm so we can measure $Im\lambda$
- $Im\lambda$ is the phase between mixing and decay amplitudes
- When we have only one dominant decay amplitude all the hadronic physics cancel (YES!!!)
- In some cases this phase is O(1)

Example: $B \rightarrow \psi K_S$

Reminder ψ is a $\bar{c}c$, K_S is s and d

- One decay amplitude, tree level $A \propto V_{cb}V_{cs}^*$. In the standard parametrization it is real
- Very important: $|A| = |\overline{A}|$ to a very good approximation.
- In the standard parametrization $q/p = \exp(2i\beta)$ to a very good approximation
- We then get

$$Im\lambda = Im\left[\frac{q}{P}\frac{\bar{A}}{A}\right] = \sin 2\beta$$

■ For HW do some other decays: D^+D^- , $\pi^+\pi^-$, ϕK_S and $B_s \rightarrow \psi \phi$ (Ignore the subtleties)

Y. Grossman

Flavor physics (3)

Instead of summary

Flavor physics (3)

All together now

Y. Grossman

Flavor physics (3)

Zoom in

Y. Grossman

Flavor physics (3)

The NP flavor problem

Flavor physics (3)

The flavor problems

- "Problem" is not a problem. It is a hint for something more fundamental
- The SM flavor problems
 - Why there are 3 generations?
 - Why the mass ratios and mixing angles are small and hierarchical?
- The NP flavor problem is different

The SM is not perfect...

- We know the SM does not describe gravity
- At what scale it breaks down?

We parametrize the NP scale as the denominator of an effective higher dimension operator. The weak scale is roughly

$$\mathcal{L}_{\text{eff}} = \frac{\mu \, e \nu \bar{\nu}}{\Lambda_W^2} \Rightarrow \Lambda_W \sim 100 \text{ GeV}$$

- The effective scale is roughly the masses of the new fields times unknown couplings
- Flavor bounds give $\Lambda \gtrsim 10^4 \text{ TeV}$

Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \text{ TeV}$
- Flavor bounds $\Rightarrow \Lambda \gtrsim 10^4 \text{ TeV}$

Any TeV scale NP has to deal with the flavor bounds $\downarrow \downarrow$ Such NP cannot have a generic flavor structure

Flavor is mainly an input to model building, not an output

Y. Grossman

Flavor physics (3)