

Accelerating Science and Innovation

Introduction Science World Collaboration

R.-D. Heuer, CERN

CERN School of Physics, Bautzen, June 26, 2009

Accelerating Science and Innovation

CER

Introduction

Research

The Mission of CERN

Push back the frontiers of knowledge

E.g. the secrets of the Big Bang ...what was the matter like within the first moments of the Universe's existence?

 Develop new technologies for accelerators and detectors

Information technology - the Web and the GRID Medicine - diagnosis and therapy

- Train scientists and engineers of tomorrow
- Unite people from different countries and cultures

CERN in Numbers

- 2256 staff
- ~ 700 other paid personnel
- ~ 9500 users
- Budget (2009) 1100 MCHF

- 20 Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.
- 1 Candidate for Accession to Membership of CERN: Romania

 8 Observers to Council: India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco

CERN in Numbers

.....

Distribution of All CERN Users by Nation of Institute on 17 February 2009

CERN in Numbers

Distribution of All CERN Users by Nationality on 17 February 2009

- (

CERN Technologies - Innovation

Three key technology areas at CERN

Accelerating particle beams

Detecting particles

Glion Colloquium / June 2009

Large-scale computing (Grid)

CERN Technologies - Innovation

Medical imaging

Example: medical application

Accelerating particle beams

Tumour Target

Detecting particles

Large-scale computing (Grid)

Grid computing for medical data management and analysis

Glion Colloquium / June 2009

CERN Education Activities

Scientists at CERN Academic Training Programme

Physics Students Summer Students Programme

Young Researchers CERN School of High Energy Physics CERN School of Computing CERN Accelerator School

CERN Teacher Schools International and National Programmes

Accelerating Science and Innovation

Introduction (some) Aspects of Particle Physics

Features of Particle Physics

Interplay and Synergy

of different tools (accelerators - cosmic rays - reactors . . .)

of different facilities different initial states lepton collider (electron-positron) hadron collider (proton-proton) lepton-hadron collider at the energy frontier: high collision energy and intensity frontier: high reaction rate

Test of the SM at the Level of Quantum Fluctuations

Status Summer Conferences 2007

Key Questions of Particle Physics

origin of mass/matter or or origin of electroweak symmetry breaking

unification of forces

fundamental symmetry of forces and matter

unification of quantum physics and general relativity

number of space/time dimensions

what is dark matter

what is dark energy

Features of Particle Physics

Duration of large particle physics projects:

decade(s) from science case via concept, R&D, and design to realisation and exploitation Excellent training grounds in particle physics,

accelerator and detector technologies, computing

LEP/LIBRARY

LEP Note 440 11.4.1983

1983

PRELIMINARY PERFORMANCE ESTIMATES FOR A LEP PROTON COLLIDER

S. Myers and W. Schrell

First LHC physics Workshop 1984 HP Sics Workshop 1984 HP Sics Workshop 1984 LHC physics LOT 1982 HP Sics Workshop 1984 HP Sics Works In the United States where very rvely being studied at the moment. ... performance limitations of possible pp orel seems overdue, however far off in the future a such a p-LEP project may yet be in time. What we shall , in fact, rather obvious, but such a discussion has, to the best

We shall not address any detailed design questions but shall give basic equations and make a few plausible assumptions for the purpose of illustration. Thus, we shall assume throughout that the maximum energy per beam is 8 TeV (corresponding to a little over 9 T bending field in very advanced superconducting magnets) and that injection is at 0.4 TeV. The ring circumference is, of course that of LEP, namely 26,659 m. It should be clear from this requirement of "Ten Tesla Magnets" alone that such a project is not for the near future and that it should not be attempted before the technology is ready.

Duration of Projects

driving technology

long term stability and strategy

Accelerating Science and Innovation

Science Particle Physics at CERN

and CERN and the European Strategy for Particle Physics

Fixed Target Physics

Fixed Target Physics

Antiproton Physics

- ("manufacturing anti-matter")
- 1. PS $p \rightarrow pp$ 10⁻⁶/collision
- 2. AD deceleration + cooling stochastic + electron
- 3. Extraction @ $\sim 0.1c$

Cold antiprotons

4. Produce thousands of anti-H

Anti-H annihilations detected

ATHENA (\rightarrow ALPHA)

anti-H (pe⁺) + matter $\rightarrow \pi^+\pi^- + \gamma\gamma$

Neutrino Physics

General issues

- European particle physics is founded on strong national institutes, universities and laboratories and the CERN Organization; Europe should maintain and strengthen its central position in particle physics.
- Increased globalization, concentration and scale of particle physics make a well coordinated strategy in Europe paramount; this <u>strategy will be defined and updated</u> by CERN Council as outlined below.

The process:

CERN Council Strategy Group established

Open Symposium (Orsay, Jan 31/Feb 1, 2006)

Final Workshop (Zeuthen, May 2006)

Strategy Document approved unanimously by Council July 14, 2006

Unanimously approved by CERN Council July 14, 2006

The LHC will be the energy frontier machine for the 3. foreseeable future, maintaining European leadership in the LHC field; the highest priority is to fully exploit the physics potential of the LHC, resources for completion of the initial programme have to be secured such that machine and experiments can operate optimally at their design performance. luminosity upgrade (SLHC), motivated by physics results and operation experience, will be enabled by focussed R&D; to this end, R&D for machine and detectors has to be vigorously pursued now and centrally organized towards a luminosity upgrade by around 2015.

L~10³⁴

Enter a New Era in Fundamental Science

Start-up of the Large Hadron Collider (LHC), one of the largest and truly global scientific projects ever, is the most exciting turning point in particle physics.

Exploration of a new energy frontier Proton-proton collisions at $E_{CM} = 14$ Te

LHC ring: 27 km circumference

CMS

First beam around the ring Sept. 10, 2008

Incident Sept. 19, 2008

Inauguration October 21, 2008

Detectors have staged components

The initial phase (approved program) of LHC experiments is not yet fully established

Experiments need manpower for commissioning

The initial phase of LHC still needs sustained international collaboration

Capture with optimum injection phasing, correct reference

September 10, 2008

Courtesy E. Ciapala

Lyn Evans – EDMS Document 976647

September 19, 2008

Busbar splice

Lyn Evans - EDMS Document 976647

Busbar splice

Lyn Evans – EDMS Document 976647

Only with fully commissioned experiments we will be able to open the door to the new physics world!

Initial phase of LHC will tell which way nature wants us to go

Possible ways beyond initial LHC:

Luminosity upgrade (sLHC)

Doubling the energy (DLHC) new machine, R&D on high field magnets ongoing

Electron-Positron Collider ILC CLIC

Electron-Proton Collider LHeC

one possible way : luminosity upgrade

3. The LHC will be the energy frontier machine for the foreseeable future, maintaining European leadership in the field; the highest priority is to fully exploit the physics potential of the LHC, resources for completion of the initial programme have to be secured such that machine and experiments can operate optimally at their design performance. A subsequent major luminosity upgrade (SLHC), motivated by physics results and operation experience, will be enabled by focussed R&D; **SLHC** to this end, R&D for machine and detectors has to be vigorously pursued now and centrally organized towards a luminosity

upgrade by around 2015.

L~10³⁵

CERN 2008 - 2011: 240 MSFr additional funding

will partly be used to gradually increase performance of LHC, i.e. towards luminosity upgrade (L~10³⁵) sLHC :

- New inner triplet -> towards L~2*10³⁴
- New Linac (Linac4) -> towards L~5*10³⁴
 construction can/will start now → ~ 2012/13
- New PS (PS2 with double circumference)
- Superconducting Proton Linac (SPL) start *design* now, ready for decision ~ 2011/12 aimed for L~10³⁵ around 2016/17 if physics requires
- Detector R&D (seed money)

Important: international collaboration

What are the conditions at SLHC?

- 4. In order to be in the position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.
- 5. It is fundamental to complement the results of the LHC with measurements at a linear collider. In the energy range of 0.5 to 1 TeV, the ILC, based on superconducting technology, will provide a unique scientific opportunity at the precision frontier; there should be a strong well-coordinated European activity, including CERN, through the Global Design Effort, for its design and technical preparation towards the construction decision, to be ready for a new assessment by Council around 2010.

High Energy Colliders: CLIC (E_{cm} up to ~ 3TeV)

New CLIC main parameters

Center-of-mass energy	3 TeV	
Peak Luminosity	7-10 ³⁴ cm ⁻² s ⁻¹	
Peak luminosity (in 1% of energy)	2-10 ³⁴ cm ⁻² s ⁻¹	
Repetition rate	50 Hz	
Loaded accelerating gradient	100 MV/m	
Main linac RF frequency	12 GHz	
Overall two-linac length	41.7 km	
Bunch charge	4-10 ⁹	
Beam pulse length	200 ns	
Average current in pulse	1 A	
Hor./vert. normalized emittance	660 / 20 nm rad	
Hor./vert. IP beam size bef. pinch	53 / ~1 nm	
Total site length	48.25 km	
Total power consumption	390 MW	

High Energy Colliders: ILC (E_{cm} up to ~ 1TeV)

ILC @ 500 GeV

ILC web site: http://www.linearcollider.org/cms/

X-FEL at DESY a 10% ILC and 800 MEuros Test Facility!

Technically ready, start construction soon for operation from 2013

Strategy to address LC key issues

LC Detector challenges: calorimeter

High precision measurements demand new approach to the reconstruction: particle flow (i.e. reconstruction of ALL individual particles)

this requires unprecedented granularity in three dimensions

R&D needed now for key components

Jet energy resolution

- Dijet masses in WWvv, ZZvv events (no kinematic fit possible):
- Challenge: separate W and Z in their hadronic decay mode

LEP-like detector

Dark Matter and SUSY

• Is dark matter linked to the Lightest Supersymmetric Particle?

LC and satellite data (WMAP and Planck):

complementary views of dark matter.

LC: identify DM particle, measures its mass;

WMAP/Planck:

sensitive to total density of dark matter.

Together with LHC they establish the nature of dark matter.

Large Hadron electron Collider: possible layouts

The TeV Scale [2008-2033..]

neutrino sector

The European Strategy for particle physics

6. Studies of the scientific case for future neutrino facilities and the R&D into associated technologies are required to be in a position to define the optimal neutrino programme based on the information available in around 2012; *Council will play an active role in promoting a coordinated European participation in a global neutrino programme.*

Neutrino beam CERN -> Gran Sasso

tau-neutrino appearance

OPERA

A hybrid emulsion and tracking detector

Goal: Verify that the ν_{μ} are oscillating into ν_{τ}

Pb target 1.8 kton

CNGS: Beam <E_v> ≈ 17 GeV Baseline 732 km

Expected event rate: ~3600 v NC+CC /kton/year ~16 v_{τ} CC /kton/year

(for $sin^2 2\theta_{23} = 1$, $\Delta m_{32}^2 = 2.5 x 10^{-3} \text{ eV}^2$)

LAr detector

ICARUS will demonstrate feasibility for future neutrino projects

Double Chooz

Steve Brice

Fermilab

Neutrino Factory

Bottom line: Synergy

IPMU

THEORETICAL PHYSIC

 \circ Big questions = o Need to clear the cloud of o Marcat opportunities ahead • Har Window of opportunity for decision on to i • Har Window of opportunity for de • Har Window of opportunity for 0.2012 (?) • No stage experiment would achieve it, need a broad program

Accelerating Science and Innovation

World Collaboration

Cooperation works rather well world wide, so...any changes needed for the future?

facilities for HEP (and other sciences) becoming larger and expensive

funding not increasing

fewer facilities realisable

time scales becoming longer

laboratories are changing missions

 \rightarrow more coordination and more collaboration required

Outlook: Enhancing World Collaboration

Key message

Future major facilities in Europe and elsewhere require collaborations on a global scale; Council, drawing on the European experience in the successful construction and operation of large-scale facilities, will prepare a framework for Europe to engage with the other regions of the world with the goal of optimizing the particle physics output through the best shared use of resources while maintaining European capabilities.

from CERN Council Strategy Document

We need

- to maintain expertise in all regions
- long term stability and support in all three regions
- to engage all countries with particle physics communities
- to integrate particle physics developing countries (regions)
- global view from funding agencies
- a closer linkage of (at least) particle physics and astroparticle physics

We need

- to maintain expertise in all regions national – regional – global projects - long term stability and support in all three regions → example: CERN Council - to engage all countries with particle physics communities \rightarrow CERN Council Working Group set up and CERN Coordinator for External Relations established - to integrate particle physics developing countries (regions) **CERN** Council Working Group / ICFA **CERN** Coordinator for External Relations - global view from funding agencies FALC (modified) as a first step? - a closer linkage of (at least) particle physics and astroparticle physics Europe: CERN, CERN Council, ASPERA ICFA?....

We are **NOW** entering a new exciting era of particle physics

Turn on of LHC

allows particle physics experiments at the highest collision energies ever

Expect

- revolutionary advances in understanding the microcosm
- changes to our view of the early Universe

CERN unique position as host for the LHC Results from LHC will guide the way

Expect

 period for decision taking on next steps in 2010 to 2012 (at least) concerning energy frontier

-(similar situation concerning neutrino sector Θ_{13})

We are **NOW** in a new exciting era of accelerator planning-design-construction-running and need

- intensified efforts on R&D and technical design work to enable these decisions
- global collaboration and stability on long time scales (reminder: first workshop on LHC was 1984)

We need to define the most appropriate organisational form NOW and need to be open and inventive (scientists, funding agencies, politicians...)

Mandatory to have accelerator laboratories in all regions as partners in accelerator development / construction / commissiong / exploitation

Planning and execution of HEP projects today need global partnership for global, regional and national projects in other words: for the whole program

Use the exciting times ahead to establish such a partnership

Particle Physics can and should play its role as

spearhead in innovations as in the past

now and in future