Neutrino Physics

CERN School of High Energy Physics 2009 Bautzen, Germany, June 14-27, 2009

1. Introduction

The Birth of the Neutrino

W. Pauli

Before 1930: neutron → proton +e⁻ 2-body decay → monoenergetic spectrum expected

<u>experiment: continuous β-decay spectrum</u> <u>Pauli: energy-momentum conservation</u>

- → postulate new particle
- \rightarrow invisible, since Q=0
- → spin ½, ...
 Letter to Tübingen Dec. 1930 ...
 ... will never be detected

Cowen & Reines 1954-56 project ``poltergeist"
 → detection of reactor neutrinos
 → Nobel price for F. Reines 1995

Manfred Lindner

European School of High Energy Physics

New Physics: Neutrino Sources

Manfred Lindner

European School of High Energy Physics

The Standard Model

→ success of renormalizable gauge field theories

 $\begin{array}{lll} \textbf{QED} \Rightarrow & \textbf{QCD} \Rightarrow & \textbf{SM} \\ \\ U(1)_{em} \Rightarrow & SU(3)_c \Rightarrow & SU(3)_c \times SU(2)_L \times U(1)_Y \end{array}$

- Singlet with respect to all symmetries
- Renormalizability
- Anomaly free combinations of chiral fermions

 $\label{eq:main_star} \text{Many details fixed by Lagrangian:} \quad \mathcal{L} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{fermion}} + \mathcal{L}_{\text{Higgs}} + \mathcal{L}_{\text{Yukawa}}$

$$\mathcal{L}_{gauge} = -\frac{1}{2}Tr \left[G_{\mu\nu}G^{\mu\nu}\right] - \frac{1}{2}Tr \left[W_{\mu\nu}W^{\mu\nu}\right] - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} \qquad \text{(adjoint representations)}$$
$$\mathcal{L}_{fermion} = \sum_{L} \overline{L} \ i\gamma^{\mu}D_{\mu}L + \sum_{r} \overline{r} \ i\gamma^{\mu}D_{\mu}r \qquad \text{(kinetic terms of all fermions)}$$
$$\mathcal{L}_{Higgs} = |D\Phi|^{2} - V(\Phi^{+}\Phi) \qquad \text{(Higgs potential} \quad \Leftrightarrow \quad \text{SSB)}$$

 $\mathcal{L}_{Yukawa} \simeq -g_Y \overline{L} \Phi r + h.c.$ (fermion masses, CKM-mixing, fermion-Higgs interaction) Manfred Lindner European School of High Energy Physics

6

Q

u

a r k

S

European School of High Energy Physics

Problems of the Standard Model

• The hierarchy problem

- how to stabilize m_H in an embedding?
- \rightarrow SUSY, extra dimensions, composite, ...

Strong CP problem

- why is CP-violation absent in strong sector
- \rightarrow axions, ...

Too many parameters in flavour sector → ? What are generations?

Physics Beyond the Standard Model

Theoretical arguments:

SM does not exist without cutoff Higgs-doublett = only simplest extension Gauge hierarchy problem Why: 3 generations , fermion representations Many parameters (9+? Masses, 4+? Mixings) Charge quantisation, unification: GUTs, ..., Gravitation, ...

<u>2 directions:</u> Sym. breaking & Flavour

Experimental facts:

- Dark Matter & Dark Energy exist!
- Neutrino masses have been detected!
- **Baryon asymetry** of the universe $\leftarrow \rightarrow m_{v} > 0$
- → physics beyond the standard model
- \rightarrow results $\leftarrow \rightarrow$ implications for theory

Different Routes Beyond the SM

2. Introducing Neutrino Masses & Mixings

Extending the Standard Model

→ success of renormalizable gauge field theories in d=4

QED 🗲	QCD	→ SM
U(1) _{em}	SU(3) _C	$SU(3)_C \times SU(2)_L \times U(1)_Y$

symmetry, renormalizability, no anomalies particle content (symmetry representations):

gauge sector – fixed by gauge group scalar sector – must break EW symmetry, SB~2_L fermions – anomaly free combinations

➔ different levels of SM extension...

- add further SM representations
- extend the gauge symmetry
- add supersymmetry
- extend/modify basic concepts: quantum fields and/or space-time

Adding Neutrino Mass Terms

1) Postulate right handed neutrino fields -> SM+

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
$ L_Q = \left(\begin{array}{c} l_u \\ l_d \end{array}\right) $	3	2	1/3
r_u	3	1	4/3
r_d	3	1	-2/3
$L_L = \begin{pmatrix} l_\nu \\ l_e \end{pmatrix}$	1	2	-1
r_{ν} ???	1	1	0
r_e	1	1	-2

not part of SM !
makes table more symmetric
3 right handed neutrinos?
<u>NEW:</u> → 9 parameters
→ explicit fermion mass term
→ L number violation

Adding Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters -> SM+

Suggestive Seesaw Features

QFT: natural value of mass operators ← → scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim L$ violation scale \Leftarrow ? \Rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ $\Rightarrow \text{smallness of } m_v \Leftarrow \Rightarrow \text{ high scale of } I/, \text{ symmetries of } m_D, M_R$

Manfred Lindner

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

- less hierarchy in m_D or correlated hierarchy in M_R ? \rightarrow theoretically connected!
- mixing patterns: not generically large, why almost maximal, θ_{13} small?

Other effective Operators Beyond the SM

→ effects beyond 3 flavours

→ Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(\bar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(\bar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli +Romanino, Bueno et al., Barranco+Miranda+Rashba, Kopp+ML+Ota, ...

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Overview of Neutrino Mass Determinations

3. Neutrino Mass Determinations

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

Kinematical Mass Determination

model independent neutrino mass from ß-decay kinematics

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C p \left(E + m_e\right) \left(E_0 - E\right) \sqrt{\left(E_0 - E\right)^2 - m_i^2} F(E) \theta \left(E_0 - E - m_i\right)$$

$$C = G_F^2 \frac{m_e^5}{2 \pi^3} \cos^2 \theta_C \, |M|^2$$

experimental observable: m_v²

ß-source requirements :

- high β -decay rate (short $t_{1/2}$)
- low β-endpoint energy E₀
- superallowed ß-transition
- minimised inelastic scatters of B's

B-detection requirements :

- high energy resolution (< few eV)
- large solid angle ($\Delta \Omega \sim 2\pi$)
- low background

Status of kinematical Mass Determination

Troitsk

windowless gaseous T₂ source

analysis 1994 to 1999, 2001

 m_v^2 = -2.3 ± 2.5 ± 2.0 eV² $m_v \le 2.2$ eV (95% CL.)

Mainz

quench condensed solid T₂ source

analysis 1998/99, 2001/02

 $\label{eq:m_v} \begin{array}{l} m_{\nu}^2 = - \ 1.2 \pm 2.2 \pm 2.1 \ eV^2 \\ m_{\nu} \leq \quad 2.2 \ eV \ (95\% \ CL.) \end{array}$

both experiments have reached their intrinsic sensitivity limit

Manfred Lindner

The Future

KATRIN - Karlsruhe Tritium Neutrino Experiment

direct n-mass measurement with sub-eV sensitivity

Kinematical Mass Determination 1.2 100 a) **Relativistic kinematics:** b) count rate [a.u.] 9.0 8 80 count rate [a.u.] $E^{2} = p^{2} + m^{2}; \ \sum p_{i}^{\mu} = \sum p_{f}^{\mu}$ 60 $m_v = 0 eV$ 40 Endpoint of decays: 2 x 10⁻¹³ 20 Tritium $\rightarrow He^3 + e^- + \overline{\nu}_e$ 0.2 $m_v = 1 \text{ eV}$ 0 0 15 \cap 5 10 -2-0--2 _ 1 0 -3 E-En [eV]

	"Elektron-Neutrino" :	$m < 2.2 \ { m eV}$	(Mainz, Troitsk)
Bounds:	"Muon-Neutrino" :	m < 170 keV	
	"Tau-Neutrino":	m < 15.5 MeV	

energy E [keV]

Sensitivity
$$\Leftrightarrow$$
 degenerate ν -spectrum
 \Rightarrow Oscillations: $\Delta m_{ij}^2 \ll m_i^2 \Rightarrow \qquad \sum m_i^2 |U_{ei}|^2 < (2.2 \text{ eV})^2$

Future: KATRIN → 0.20 eV

\leftarrow \rightarrow c.f. comological bounds

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

Double Beta Decay

→ 2 neutrinos plus 2 electrons

Double Beta Decay: Mass Parabolas

0νββ Decay Kinematics

Majorana ν **→** 0νββ decay

warning:

other lepton number violating processes...

2νββ decay of ⁷⁶Ge observed: $\tau = 1.5 \times 10^{21}$ y

- signal at known Q-value
- 2vββ background (resulution)
- nuclear backgrounds
 - ➔ use different nuclei

Relating Rates / Lifetimes to Neutrino Masses

nuclear matrix elements:

→ virtual excitations of intermediate states

Fäßler et al., ...

2ν2β:

$$\begin{bmatrix} T_{\frac{1}{2}}^{2\nu} (0^{+} \rightarrow 0^{+}) \end{bmatrix}^{-1} = G^{2\nu}(E_{0},Z) M_{GT}^{2\nu} - \frac{g_{V}^{2}}{g_{A}^{2}} M_{F}^{2\nu} \end{bmatrix}^{2}$$
Phase space nuclear matrix element
(assuming that leading term is due to exchange of light Majorana-neutrino)
$$\begin{bmatrix} T_{\frac{1}{2}}^{0\nu}(0^{+} \rightarrow 0^{+}) \end{bmatrix}^{-1} = G^{0\nu}(E_{0},Z) M_{GT}^{0\nu} - \frac{g_{V}^{2}}{g_{A}^{2}} M_{F}^{0\nu} \qquad (m_{V})^{2}$$
Remark: 0v2\beta also generated by SUSY, LR

Nuclear Matrix Elements

0v**2**β half-lives in units of 10²⁶ years for $< m_v > = 50$ meV for nuclear matrix of different authors

Attention: systematically correleated calculatio

cally ons!	Nat	net di.	stet al.	et al.	dtet al. aess	eret al.	set al.
Nucleus	Ref.: (20)	(80)	(81)	(82)	(24,83)	(84)	:
^{48}Ca	12.7	35.3	-	-	-	10.0	
$^{76}\mathrm{Ge}$	6.8	70.8	56.0	9.3	12.8	14.4	
82 Se	2.3	9.6	22.4	2.4	3.2	6.0	
$^{100}\mathrm{Mo}$	-	-	4.0	5.1	1.2	15.6	
$^{116}\mathrm{Cd}$	-	-	-	1.9	3.1	18.8	
$^{130}\mathrm{Te}$	0.6	23.2	2.8	2.0	3.6	3.4	
$^{136}\mathrm{Xe}$	-	48.4	13.2	8.8	21.2	7.2	
$^{150}\mathrm{Nd}^a)$	-	-	-	0.1	0.2	-	
$^{160}\mathrm{Gd}^a)$	-	-	-	3.4	-	-	

How to measure $0\nu 2\beta$ decay ?

Heidelberg-Moscow Experiment @ LNGS

Detector number	Total mass (kg)	Active mass (kg)	Enrichment in ⁷⁶ Ge(%)	PSA
No. 1	0.980	0.920	85.9 ± 1.3	No
No. 2	2.906	2.758	86.6 ± 2.5	Yes
No. 3	2.446	2.324	88.3 ± 2.6	Yes
No. 4	2.400	2.295	86.3 ± 1.3	Yes
No. 5	2.781	2.666	85.6 ± 1.3	Yes

Technical parameters of the five enriched ⁷⁶Ge detectors

Fig. 1. The HEIDELBERG–MOSCOW $\beta\beta$ -experiment in the Gran Sasso (top), and four of the enriched detectors during installation (bottom left). The fifth detector was installed in an extra shielding using electrolytic copper as inner shield (bottom right).

Data acquisition and analysis of the ⁷⁶Ge double beta experiment in Gran Sasso 1990–2003

NIM A 522 (2004)

H.V. Klapdor-Kleingrothaus^{*,1}, A. Dietz, I.V. Krivosheina², O. Chkvorets

Evidence by Part of HM

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in ⁷⁶Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

Nov 1990- May 2003
71.7 kg year
Bgd 0.11 / kg y keV
28.75 ± 6.87 events (bgd:~60)
4.2 sigma evidence for 0vββ
0.34-2.03 x10²⁵ y (3 sigma)
Best fit 1.19 x10²⁵ y

•m_{ee} = 0.1-0.9 eV •best fit 0.44 eV
SSE* Analysis: Strengthening the Evidence?

Other running Experiments

CUORICINO (Cryogenic Underground Observatory for Rare Events): Firenze, Gran Sasso, Insubria, LBNL, Leiden, Milano, Neuchatel, South Carolina, Zaragoza

Location: Gran Sasso Underground Laboratory Source = detector, TeO₂ (40 kg) \Rightarrow ¹³⁰Te (13 kg): Q = 2533±4 keV

$\tau_{1/2} > 1.8 \ 10^{24}$ at 90% C.L. (<mv> < [0.2+1.1] eV)

NEMO3 (Neutrino Ettore Majorana Observatory):

CENBG Bordeaux, Charles Univ. Prague, FNSPE Prague, INEEL, IReS Strasbourg, ITEP Moscow, JINR Dubna, Jyvaskyla Univ., LAL Orsay, LPC Caen, LSCE Gif, Mount Holyoke College, Saga Univ, UCL London

Location: Frejus Underground Laboratory

Source \neq detector \Rightarrow study different nuclei; main target ¹⁰⁰Mo (6.9 kg): Q = 3034\pm6keV

Results → so far mass limits weaker as HM ; O(0.7-5eV)

New Experiments

Advanced construcion:

- CUORE (Te-130) → 2010?
- GERDA (Ge-76) **→** start 2009!

Under construction:

- Majorana
- EXO
- MOON
- Super-NEMO
- ...

GERDA Construction

Vacuum-insulated double wall stainless steel cryostat

→ data taking 2009

Neutrino-less Double β-Decay

aims of new experiments:

- test HM claim
- (∆m₃₁²)^{1/2} ~ 0.05eV ± errors
 → reach 0.01eV
 - → CUORE
 - → GERDA phases I, II, (III)

Comments:

- cosmology: limitation by systematical errors → ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation $\rightarrow 0\nu\beta\beta$ signal not guaranteed
- $0\nu\beta\beta$ signal from *some other* new BSM lepton number violating operator
 - very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory

<u>alternatives:</u> LR, RPV-SUSY, ... → other *L* operators ← → NSI's

Schechter+Valle:

L violating operator \rightarrow radiative mass generation \rightarrow Majorana nature of v's However: This may only be a tiny correction to a much larger Dirac mass term

Manfred Lindner

Lepton Flavour Violation

- Majorana neutrino mass terms
- **R-parity violating supersymmetry** Hall+Kosteleck+Rabi, Borzumati+Masiero, Hisano+Tobe, Casas+Ibarra, Antusch +Arganda+Herrero+Teixeira, Joaquim+Rossi, ...

 \rightarrow interplay: v's – LFV - LHC

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

The thermal evolution of the Universe:

10⁻⁴³ seconds

speculative physics: 10¹⁹GeV:Strings, ...

Time

10⁻³⁴ seconds

10²⁷degrees

GUT physics: 10¹⁶GeV

10⁹ degrees Synthesis of light elements

300 thousand He vears Universe becomes transparent → 3K radiatio 6000 degrees

1 thousand million years

Structure formation, molecules, ...

18 degrees

Today: 15 thousand million years

 $T_{\gamma} \simeq 2.7 \text{K}, T_{\nu} \simeq 1.7 \text{K}$ BBN works for N_{\nu}=3 330 Neutrinos / cm3 Mass: Neutrinos \leq baryons

Neutrinos & Cosmology

- Dark Matter ~ 25% & Dark Energy 70%
- mass of all neutrinos: $0.001 \le \Omega_v \le 0.02$
- baryonic matter $\Omega_{\rm B} \sim 0.04$

Neutrino mass contribution possibly as big as all baryonic matter >> visible matter much more COLD dark matter & dark energy neutrinos are an important hot dark matter component

Present Day Acceleration

Comological impact of neutrinos:

- hot component in structure formation: 330v/cm³ x mass -

- Big Bang Nuklueosynthesis \rightarrow
- Baryon asymmetry \rightarrow Leptogenesis \rightarrow ?

-...

Cosmology and Neutrino Mass

Baryon Asymmetry & Neutrinos

measured baryon asymmetry: $\eta = \frac{n_B}{n_{\gamma}} = 4(3) \cdot 10^{-10} \dots 7(10) \cdot 10^{-10}$ sphalerons **Necessary: Sakharov conditions:** R• B-violating processes ←→ sphalerons • C- and CP-violation $\leftarrow \rightarrow$ contained in model chemical potential • departure from thermal equilibrium $\leftarrow \rightarrow \Gamma < H$ analysis (\mathbf{S}) natural explanation of leptogenesis baryon asymmetry by ΔL (\mathbf{d}) minimal leptogenesis works nicely • different interesting variants ... a talk by itself

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

Two Neutrino Oscillations

2 Neutrinos: v_e, v_μ

 $\begin{aligned} |\nu_e(0)\rangle &= \cos\theta \, |\nu_1\rangle + \sin\theta \, |\nu_2\rangle \\ |\nu_\mu(0)\rangle &= -\sin\theta \, |\nu_1\rangle + \cos\theta \, |\nu_2\rangle \end{aligned}$

$$|\nu_{\mu}(t)\rangle = -\sin\theta \exp[-\frac{iE_{1}t}{\hbar}] |\nu_{1}\rangle + \cos\theta \exp[-\frac{iE_{2}t}{\hbar}] |\nu_{2}\rangle$$

$$E_i = \sqrt{p_i^2 + m_i^2} \xrightarrow{p_i = p \gg m_i} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$
$$L = c \cdot t \qquad \Delta m^2 = m_2^2 - m_1^2 \Rightarrow \quad E_2 - E_1 = \frac{\Delta m^2}{2E}$$

2v-transitionprobability:

$$P(\nu_{\mu} \to \nu_{e}) = \left| \langle \nu_{\mu}(t) | \nu_{e}(0) \rangle \right|^{2} = \sin^{2} 2\theta \cdot \sin^{2} \left(\frac{\Delta m^{2} L}{4E} \right)$$

$$v_e, v_\mu, v_\tau \rightarrow 9$$
 oscillation channels for neutrinos
 $v_e, v_\mu, v_\tau \rightarrow 9$ channels for anti-neutrinos (assuming $3v$!)

Oscillations in QFT

- is ordinary QM sufficient to describe v-oscillations?
- v's are relativistic, 2nd quantization, ...
 - → Feynman diagram of neutrino oscillation:
 - energy momentum properties, quantum numbers
 - → QM limit, coherence, kinematics, ...
 - e.g. observation of solar neutrinos in v_{e} channel

Neutrino Oscillations in QFT

QFT description of a neutrino produced in a decay at rest:

- localized source and detector
- $L = |\vec{x}_D \vec{x}_S|$
- initial particle at rest
- target particle at rest

... DIF similar

Transition probability from Feynman diagram:

$$\left\langle P_{\substack{(-)\\\nu_{\alpha}\rightarrow}}^{(-)} \right\rangle_{\mathcal{P}} \propto \int dP_S \int_{\mathcal{P}} \frac{d^3 p_{D1}}{2E_{D1}} \cdots \frac{d^3 p_{Dn_D}}{2E_{Dn_D}} \left| \mathcal{A}_{\substack{(-)\\\nu_{\alpha}\rightarrow}}^{(-)} \right|^2$$

\Rightarrow leads to neutrino oscillation + avoids confusion ...

Manfred Lindner

Kinematics: Equal Energy or equal Momenta?

- Consider e.g. pion decay at rest: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- Neutrino energy and momentum determined by energy-momentum conservation

$$p_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 - \frac{m_k^2}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$
$$E_k^2 = \frac{m_\pi^2}{4} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right)^2 + \frac{m_k^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_k^4}{4 m_\pi^2}$$

• For
$$E \gg m$$
: $p_k \simeq E - \xi \frac{m_k^2}{2E}$, $E_k \simeq E + (1 - \xi) \frac{m_k^2}{2E}$
with $E = \frac{m_\pi}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) \simeq 30 \,\text{MeV}$, $\xi = \frac{1}{2} \left(1 + \frac{m_\mu^2}{m_\pi^2} \right) \simeq 0.8$

⇒ neither equal energy nor equal momentum!

$$e^{ipx} \Rightarrow \left[p_{\mu} \cdot x^{\mu} = p_k L - E_k T = -\frac{m_k^2 L}{2E} \right]$$
 for $L = T$

 $\Rightarrow \xi$ drops out of the oscillation formulae \Leftrightarrow naive treatment correct

• Shown for π -decay, but valid in general (DIF, N-body, ..., different ξ)

Localized Source and Detector:

- Feynman rules for particles of given momentum (\simeq on-shell)
 - \Rightarrow this corresponds to an infinitely extended (non-localized) plane wave
- Localized source (wave packet) and detector in space-time ($\Delta x_S, \Delta t_S$), ($\Delta x_D, \Delta t_D$):
 - \Rightarrow Source: Fourier superposition of momenta with $\sigma_S^2 \simeq min(\Delta x_S^2, \Delta t_S^2)$
 - \Rightarrow Detector: projection on a superposition of momenta with $\sigma_D^2 \simeq min(\Delta x_D^2, \Delta t_D^2)$
- Different masses and momenta \Rightarrow dispersion \Rightarrow loss of coherence

- Oscillations from QFT $\Rightarrow P_{\nu_{\alpha} \to \nu_{\beta}}(L,T) = \left|\sum_{k} U_{\alpha k}^{*} e^{ip_{k}L iE_{k}T} U_{\beta k}\right|^{2}$
- Very interesting QM effects (σ , decay)

General 3x3 neutrino mixing matrix:

has (up to) 3 angles + 1 Dirac-phase +2 Majorana-phases: θ_{12} , θ_{23} , θ_{13} , δ , Φ_1 , Φ_2

$$U_{MNS} = U \cdot \operatorname{diag}(\exp[\mathbf{i}\Phi_1], \exp[\mathbf{i}\Phi_2], \mathbf{1})$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

• Only U enters in neutrino oscillations: $\int J_{ij}^{e_l e_m} := U_{li} U_{lj}^* U_{mi}^* U_{mj}$

• All oscillation frequencies show up:
$$\Delta_{ij} := \frac{\Delta m_{ij}^2 L}{4E} = \frac{(m_i^2 - m_j^2)L}{4E}$$

$$P(\nu_{e_l} \to \nu_{e_m}) = \underbrace{\delta_{lm} - 4 \sum_{i>j} \operatorname{Re} J_{ij}^{e_l e_m} \sin^2 \Delta_{ij}}_{P_{CP}} \underbrace{-2 \sum_{i>j} \operatorname{Im} J_{ij}^{e_l e_m} \sin 2\Delta_{ij}}_{P_{CP}}$$

⇒ Leptonic CP violation, genuine 3 flavour and matter effects

Manfred Lindner

Neutrinos: $P(\nu_{e_l} \rightarrow \nu_{e_m}) = P_{CP} + P_{CP}$ Antineutrinos: $P(\overline{\nu}_{e_l} \rightarrow \overline{\nu}_{e_m}) = P_{CP} - P_{CP}$

\Rightarrow projecting out CP Asymmetries:

$$\mathbf{a^{CP}} := \frac{\mathbf{P}(\nu_{\mathbf{e_l}} \to \nu_{\mathbf{e_m}}) - \mathbf{P}(\overline{\nu}_{\mathbf{e_l}} \to \overline{\nu}_{\mathbf{e_m}})}{\mathbf{P}(\nu_{\mathbf{e_l}} \to \nu_{\mathbf{e_m}}) + \mathbf{P}(\overline{\nu}_{\mathbf{e_l}} \to \overline{\nu}_{\mathbf{e_m}})} = \frac{P_{CP}}{P_{CP}}$$

... in practise not very useful:

- \bullet different systemytics for ν and $\overline{\nu}$
- different statistics
- only one type of neutrinos

\Rightarrow global fits with masses, mixings and CP parameters

Matter Effects and MSW Resonance

Mikheyev-Smirnov-Wolfenstein: coherent forward scattering

 $\mathcal{L}_{NC} = \mathsf{flavour} \ \mathsf{universal}$ $\mathcal{L}_{CC} = \sqrt{2}G_F n_e \quad \Leftrightarrow \quad \mathsf{only} \ \nu_e$

MSW-resonance energy(Δm_{31}^2) Earth: E_{res} \simeq 10 GeV

for beams dominated by average density

 $\rho = \rho_{\rm average} + \delta \rho$

Baseline & MSW Matter Effect

• $E_{resonance} \simeq 10 - 15$ GeV, matter effects grow with distance L

 \bullet Average density profile uncertainties decrease with L \Rightarrow $~\simeq 5\%$ error

Hamiltonian for 3 Neutrino Oscillations in Flavour Basis:

$$\mathbf{H} = H_0 + \delta \mathbf{H}_{CC} + \delta \mathbf{H}_{NC} = \frac{1}{2E} \mathbf{U} \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix} \mathbf{U}^{\mathrm{T}} + \frac{1}{2E} \begin{pmatrix} \mathbf{A} + \mathbf{A}' & 0 & 0 \\ 0 & \mathbf{A}' & 0 \\ 0 & 0 & \mathbf{A}' \end{pmatrix}$$

•
$$\mathbf{A} = \pm \frac{2\sqrt{2}\mathbf{G}_{\mathbf{F}}\mathbf{Y}\rho\mathbf{E}}{\mathbf{m}_{\mathbf{n}}} = 2V \cdot E$$
 $\nu \oplus \text{matter}$ and $\overline{\nu} \oplus \text{anti} - \text{matter} \Rightarrow "+"$

• $Y = e^{-}$ /nucleon ρ =matter density m_n =nucleon mass

• Overall phases drop out: $m_i
ightarrow m_i - m_1 \Rightarrow m_1$ and A' can be eliminated

$$\mathbf{H'} = \frac{1}{2E} \mathbf{U} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} \mathbf{U^T} + \frac{1}{2E} \begin{pmatrix} \mathbf{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Manfred Lindner

- In good approximation $\Delta m^2_{12} \simeq 0$
- U can be written as a sequence of rotations: $U = R_{23}R_{13}R_{12}$

$$\begin{split} \mathbf{H}^{\prime\prime} &= \frac{1}{2E} \mathbf{R_{23}} \mathbf{R_{13}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} \mathbf{R_{13}^{-1}} \mathbf{R_{23}^{-1}} + \frac{1}{2E} \mathbf{R_{23}} \begin{pmatrix} \mathbf{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{R_{23}^{-1}} \\ &= \frac{1}{2E} \mathbf{R_{23}} \begin{bmatrix} \mathbf{R_{13}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} \mathbf{R_{13}^{-1}} + \begin{pmatrix} \mathbf{A} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{bmatrix} \mathbf{R_{23}^{-1}} \\ &= \frac{1}{2E} \mathbf{R_{23}} \begin{bmatrix} \begin{pmatrix} \bullet & 0 & \bullet \\ 0 & 0 & \bullet \\ \bullet & 0 & \bullet \end{pmatrix} + \begin{pmatrix} \mathbf{A} & 0 & 0 \\ 0 & 0 & 0 \\ \bullet & 0 & 0 \end{pmatrix} \end{bmatrix} \mathbf{R_{23}^{-1}} \\ &= \frac{1}{2E} \mathbf{R_{23}} \begin{bmatrix} \mathbf{R_{13}'} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ \bullet & 0 & \Delta (m_{31}^2)' \end{pmatrix} (\mathbf{R_{13}'})^{-1} \end{bmatrix} \mathbf{R_{23}^{-1}} \end{split}$$

 \Rightarrow re-insert $R_{12} \Rightarrow U' \Rightarrow$ parameter mapping in 1-3 subspace

- Different mappings for neutrinos and antineutrinos
- 1-3 sub-space mapping like in 2 neutrino case

• Relevant quantitiv
$$C_{\pm}^2 = \left(\frac{A}{\Delta m_{31}^2} - \cos 2\theta_{13}\right)^2 + \sin^2 2\theta_{13}$$

- MSW resonance condition for $\theta_{13} \simeq 0$: $\Delta m_{31}^2 = A = 2VE = \pm \frac{2\sqrt{2}G_F Y \rho E}{m_n}$
- Effective parameters in matter:

$$\sin^{2} 2\theta'_{13} = \frac{\sin^{2} 2\theta_{13}}{C_{\pm}^{2}}$$
$$\Delta m_{31,m}^{2} = \Delta m^{2} C_{\pm}$$
$$\Delta m_{32,m}^{2} = \frac{\Delta m^{2} (C_{\pm} + 1) + A}{2}$$
$$\Delta m_{21,m}^{2} = \frac{\Delta m^{2} (C_{\pm} - 1) - A}{2}$$

• Corrections due to

$$-\Delta m_{12}^2 \neq 0$$

- non-constant matter profiles \Rightarrow $\,$ solve Schrödinger equation

Analytic Approximations

$$\mathbf{P}(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) = \\ \approx \quad \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \quad \frac{\sin^{2}((1-\hat{A})\Delta)}{(1-\hat{A})^{2}}$$

 $\Delta = \Delta m_{31}^2 L/4E$ $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2 \sim 1/30$ A = matter potential

 $\sin \delta_{\rm CP} \,\alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$ \pm $\cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})}$

+

+
$$\alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

Cervera et al. Freund, Huber, ML Akhmedov, Johansson, ML, Ohlsson, Schwetz

Degeneracies, Correlations, ...

Fixed L/E → probabilities invarinat under transformations:

- $\theta_{23} \rightarrow \pi/2 \theta_{23}$ Fogli, Lisi P($v_e \rightarrow v_{\mu}$) not really invariant \rightarrow compensation by small parameter off-sets
- $\Delta m^2 \rightarrow -\Delta m^2$ compensated by offset in δ Minakata, Nunokawa
- $P(v_e \rightarrow v_{\mu}) = const. \rightarrow \delta \theta_{13}$ manifolds Koike, Ota, Sato & Burguet-Castell et al.
- **>** 8-fold degeneracy Barger, Marfatia, Whisnant

- parameter extraction suffers from correlations & degeneracies
- how to break degeneracies & correlations?

The magic Baseline

$$\begin{split} P(\nu_e \to \nu_\mu) &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \ \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\ &\pm \ \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \cos \delta_{\rm CP} \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

- All terms besides the first vanish for $\sin(\hat{A}\Delta) = 0$
- Condition for uncorrelated sensitivity to θ_{13} $\hat{A}\Delta = \pi$
 - \Rightarrow inserting $\hat{A}=A/\Delta m^2_{31}$, A=2VE, $\Delta=\Delta m^2_{31}L/4E$ one finds

$$L_{magic} = \frac{2\pi}{\sqrt{2}G_F n_e} = 7630 \text{ km} \cdot \frac{\rho}{4.3g/cm^3}$$
 Huber, Winter

• Note that this is not the MSW resonance condition
Status of Neutrino Oscillations

