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Cosmological Principle

i)  Copernican Principle: We are not privileged 
observers

ii) Relativity Principle: Physical Laws do not 
depend on space-time

 There exists an infinite set of observers such that the 
universe is isotropic in all measurable properties at all 
times

 The Universe is spatially homogeneous and isotropic



Consequences

i)  The only true velocity fields can be expansion 
or contraction

velocity of observers depends only on spearation

v12 = Hr12

ii) The must exist a measure of distance 
independent of direction

d = z/H



Maximally symmetric spaces

ds2 = Cµνdxµdxν + K−1dz2
Construction

with embedding
KCµνx

µxν + z2 = 1

ds2 = Cµνdxµdxν +
K(Cµνxµdxν)2

(1 − KCµνxµxν)

Space-time with a maximally symmetric subspace

ds2 = dt2 − R2(t)

(
d!u2 +

K(!u · d!u)2

(1 − K!u2)

)



Friedmann-Robertson-Walker metric

ds2 = dt2 − R2(t)

(
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

)

R(t) is the scale factor
k is curvature constant : 

k = -1, 0, +1 for spatially open, flat or closed Universes

with perfect-fluid source

T µν = −pgµν + (ρ + p)uµuν

and solve Einstein’s equations

Rµν −
1

2
gµνR − Λgµν = 8πGNTµν



The (00) component gives:

H2 ≡
Ṙ2

R2
=

8πGNρ

3
−

k

R2
+

Λ

3

The (ii) components give:

R̈

R
=

Λ

3
−

4πGN(ρ + 3p)

3

In addition Tμν;ν = 0 gives:
ρ̇ = −3H(ρ + p)



Consider k = Λ = 0

Ṙ2

R2
=

8πGNρ

3
ρ̇ = −3H(ρ + p)

i) Radiation dominated Universe: p = ρ/3

ρ ~ R-4 and R ~ t1/2 

ii) Matter dominated Universe: p = 0

ρ ~ R-3 and R ~ t2/3 



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Q

R

k = +1

i) Start at singularity at 
R = 0 and expand to 
R = ∞

ii) Start at R = ∞ and 
contract to 
singularity at R = 0

Λ1

Λ1 > Qmax

k = +1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Q

R

k = +1

i) Start at singularity at 
R = 0 and expand to 
R = R2

ii) Start near R = R2 
and contract to 
singularity at R = 0

Λ2 = Qmax

Λ2

R2

k = +1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Q

R

k = +1

Λ2

ii) Start near R = R2 
and contract to 
singularity at R = 0

iii)Start near R = R2 
and expand to R = ∞

iv) Start at R = ∞ and 
contract to R = R2

v) Einstein Static Univ.

Λ2 = Qmax

R2

k = +1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Q

R

k = +1

i) Start at singularity at 
R = 0 and expand to 
R = Rl and recollapse 
to R = 0

ii) Start at R = ∞ and 
contract to R = Ru 

and then reexpand to 
R = ∞

Λ3

0 < Λ3 < Qmax

Rl Ru

k = +1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Q

R

k = +1

Λ4

i) Start at singularity at 
R = 0 and expand to 
R = R4 and 
recollapse to R = 0

Λ4 ≤ 0

R4

k = +1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

i) Start at singularity at 
R = 0 and expand to 
R = ∞

ii) Start at R = ∞ and 
contract to 
singularity at R = 0

Λ1

Λ1 ≥ 0
Q

R

k = 0, -1



General Evolution

Define Q =
3k

R2
− 8πGNρ

Ṙ

R
=

[
Λ − Q

3

]1/2

⇒ Q ≤ Λ

,    p = (γ-1)ρ,     ρ ~ R-3γ  

Λ4

R4

i) Start at singularity at 
R = 0 and expand to 
R = R4 and 
recollapse to R = 0

Λ4 < 0
Q

R

k = 0, -1



Conformal Coordinates

ds2 = dt2−R2(t)
(
dχ2 + f 2(χ)(dθ2 + sin2 θdφ2)

)

f (χ) = { sinhχ k =−1

sinχ k = +1
χ k = 0

Conformal time
Rdη = dt

ds2 = R2(η)
[
dη2 − dχ2 − f2(χ)(dθ2 + sin2 θdφ2)

]



Solutions

Friedman equation becomes

R ={ t ={
p = 0

coshη−1 k =−1

1− cosη k = +1
η2/2 k = 0

sinhη−η k =−1

η− sinη k = +1
η3/6 k = 0

η

χ

R
′′

+ kR =
4πGN

3
(ρ− 3p)R3



R ={ sinhη k =−1

sinη k = +1
η k = 0 t ={coshη−1 k =−1

1− cosη k = +1
η2/2 k = 0

p = ρ/3

η

χ



The Universe today

Define the deceleration parameter : q0 = −
R̈0R0

Ṙ2
0

R̈

R
=

Λ

3
−

4πGN(ρ + 3p)

3
           becomes (with p << ρ)

−2q0H
2
0 =

2Λ

3
−

8πGNρ0

3
= Λ − H2

0 −
k

R2
0

or
k

R2
0

= Λ + H2
0(2q0 − 1)

or
k

R2
0

= H2
0(

3

2
Ω0 − q0 − 1)

and  h = H/100 (km/Mpc/s)

Ω = ρ/ρcwhere g cm-3ρc = 3H2/8πGN = 1.88 × 10−29h2



The Universe today

When Λ = 0, 

q0 =
4πGNρ0

3H2
0

=
Ω0

2

and
k

R2
0

= H2
0(Ω0 − 1) (still true for p ≠ 0)



Evolution of Ω

(Λ = 0)

Ω =
k

R2H2
+ 1

k = 0 ⇒ Ω = 1  always

R2H2 =
8πGNA

3R3γ−2
− kwrite

Ω =
k

8πGNA
3R3γ−2 − k

+ 1

!

1

R

k = 0k = 0

!

1

R

k = +1= +1

k = = 0

!

1

R

k = +1= +1

k = = 0

k = = -1



Age of the Universe

(Λ = 0)
Ṙ2

R2
=

8πGNρ

3
−

k

R2

ρ = ρ0

(
R0

R

)3γ k

R2
0

= H2
0(Ω0 − 1) x = R/R0

ẋ2 = Ω0H
2
0(

R0

R
)3γ−2 − (Ω0 − 1)H2

0

ẋ = H0
[
1 − Ω0 + Ω0x

2−3γ
]1/2

H0t =

∫ 1

0

dx

[1 − Ω0 + Ω0x2−3γ]1/2



Age of the Universe

(Λ = 0)

Special cases: Ω0 = 1

γ = 1
t =

2

3H

γ = 4/3
t =

1

2H



Proper Distance

dp = R(t)

∫ r1

0

dr′
√

1 − kr′2

For light paths, ∫ t

t1

dt′

R(t′)
=

∫ r1

0

dr′
√

1 − kr′2

as t1 → 0, r1 is the maximum distance 
from which we can receive a signal

Particle Horizon

dH = R(t)

∫ rH

0

dr′
√

1 − kr′2
= R(t)

∫ t

0

dt′

R(t′)



Proper Distance

(Λ = 0)

Special cases: Ω0 = 1

γ = 1
dH = 3t

γ = 4/3
dH = 2t

dH/R grows with time  ⇒  we see more of 
the universe as time goes on



Redshift

z ≡
νe − νo

νo

= vrel

If  s = R δr v = ṡ = Ṙδr =
Ṙ

R
Rδr = Hs

1 + z =
νe

νo

= 1 +
Ṙδt

R
=

Ro

R



Angular Size vs redshift

Proper diameter  D = R(te) r δ = s δ

s =
2

H0(1 + z)

[
1 − (1 + z)−1/2]

For k = 0, γ = 1

small z,   δ ~ HD/z

large z,   δ ~ HDz/2

s = R(te)

∫ to

te

dt′

R(t′)



Redshift-Magnitude

Luminosity distance

Observed Flux F =
Le

4πd2
L

=
Lo

4π(R0r)2

so, d2
L =

Le

Lo

(R0r)2 dL = (1 + z)R0r = (1 + z)2s

Define m = −2.5 log F M = −2.5 log Le

m − M = −5 + 5 log dL/pc

= −5 − log H + 5 log z + 5 log(1 + (1 − q0)z/2)



slope is Hubble law

Perlemutter et al.
Riess et al.
Tonry et al.
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Figure 21.1: This shows the preferred region in the Ωm–ΩΛ plane from the
compilation of supernovae data in Ref. 18, and also the complementary results
coming from some other observations. [Courtesy of the Supernova Cosmology
Project.]

Two major studies, the ‘Supernova Cosmology Project’ and the ‘High-z Supernova
Search Team,” found evidence for an accelerating Universe [17], interpreted as due to
a cosmological constant, or to a more general ‘dark energy’ component. Current results
from the Supernova Cosmology Project [18] are shown in Fig. 21.1 (see also Ref. 19).
The SNe Ia data alone can only constrain a combination of Ωm and ΩΛ. When combined
with the CMB data (which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Most results in the literature are consistent with Einstein’s
w = −1 cosmological constant case. For example, Wood-Vasey et al. [20] combined data
from the ESSENCE and SNLS surveys and deduced w = −1.07 ± 0.09 (stat 1σ) ± 0.13

July 24, 2008 18:04



The Hot Thermal Universe

ργ =

∫
Eγdnγ

The energy density in photons:

with density of states (gγ = 2)

dnγ =
gγ

2π2
[exp(Eγ/T ) − 1]−1q2dq

ργ =
π2

15
T 4 pγ =

1

3
ργ sγ =

4ργ

3T
nγ =

2ζ(3)

π2
T 3

giving

ρi =

∫
Eidnqi

In general,

dnqi
=

gi

2π2
[exp[(Eqi

− µi)/T ] ± 1]−1q2dq
with

Eqi
=

(
m2

i + q2
i

)1/2and



For Radiation mi << T:

ρ =

(
∑

B

gB +
7

8

∑

F

gF

)
π2

30
T 4 ≡

π2

30
N(T ) T 4

Table 1: Effective numbers of degrees of freedom in the standard model.

Temperature New Particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57
mπ < T < Tc∗ π’s 69
Tc < T < mstrange - π’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345
mW,Z < T < mtop W±, Z 381
mt < T < mHiggs t, t̄ 423
MH < T Ho 427

*Tc corresponds to the confinement-deconfinement transition between quarks
and hadrons. N(T ) is shown in Figure 1 for Tc = 150 and 400 MeV. It has
been assumed that mHiggs > mtop.

N(T ) up to temperatures of 0(100) GeV. The change in N can be seen in the
following table.

At higher temperatures (T ! 100 GeV), N(T ) will be model dependent.
For example, in the minimal SU(5) model, one needs to add to N(T ), 24 states
for the X and Y gauge bosons, another 24 from the adjoint Higgs, and another
6 (in addition to the 4 already counted in W±, Z and H) from the 5̄ of Higgs.
Hence for T > MX in minimal SU(5), N(T ) = 160.75. In a supersymmetric
model this would at least double, with some changes possibly necessary in the
table if the lightest supersymmetric particle has a mass below MH .

The presence of a particle species in the thermal background assumes ther-
mal equilibrium and hence interaction rates which are sufficiently fast com-
pared with the expansion rate of the Universe. Roughly, this translates to the
condition for each particle type i, that some rate Γi involving that type be
larger than the expansion rate of the Universe or

Γi > H (23)

in order to be in thermal equilibrium.
Examples of a processes in equilibrium at early times which drops out of

equilibrium or decouples at later times are the processes which involve neutri-
nos. If we consider the standard neutral or charged-current interactions such

5
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Time-temperature Relation

γ = 4/3
t =

1

2H

Recall
H2 =

8πGNρ

3

t = (
3

32πGNρ
)1/2 = (

90

32π3GNN(T )
)1/2T −2

tsT
2
MeV =

2.41
√

N(t)

or



Equilibrium

Neutrinos

• Particles will be in equilibrium if there is a reaction 
rate which is fast enough: Γ > Η0

20
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80

100

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Log(T/MeV)

Figure 1: The effective numbers of relativistic degrees of freedom as a function of tempera-
ture.

as e+ + e− ↔ ν + ν̄ or e + ν ↔ e + ν etc., the rates for these processes can be
approximated by

Γ = n〈σv〉 (24)

where 〈σv〉 is the thermally averaged weak interaction cross section

〈σv〉∼ 0(10−2)T 2/M4
W (25)

and n is the number density of leptons. Hence the rate for these interactions
is

Γwk∼ 0(10−2)T 5/M4
W (26)

The expansion rate, on the other hand, is just

H =

(

8πGNρ

3

)1/2

=

(

8π3

90
N(T )

)1/2

T 2/MP ∼ 1.66N(T )1/2T 2/MP . (27)

The Planck mass MP = G−1/2
N = 1.22 × 1019 GeV.

Neutrinos will be in equilibrium when Γwk > H or

T > (500M4
W )/MP )1/3∼ 1MeV. (28)

6

kept in thermal equilibrium by processes such as

Γ = n〈σv〉with 〈σv〉∼ 0(10−2)T 2/M 4
Wand

Γwk∼ 0(10−2)T 5/M 4
W

Neutrinos in equilibrium when
T > (500M 4

W)/MP)1/3∼ 1MeV.



Entropy Conservation

Energy conservation:  Tμν;ν = 0

ρ̇ = −3H(ρ + p)

equivalent to 
ṗR3 =

d

dt
(R3(ρ + p)) =

d

dt
(R3Ts)

Now, ṗ =
dp

dT

dT

dt
= s

dT

dt

s
dT

dt
R3 =

d

dt
(R3Ts) = s

dT

dt
R3 + T

d

dt
(R3s)so

⇒
d

dt
(R3s) = 0



Neutrino Temperature

• At T ~ 1 MeV neutrinos decouple
• At T ~ 1/2 MeV e+ e- annihilate to photons
• Entropy of “γ’s” and ν’s conserved speparately
• Prior to annihilation, Tγ = Tν = T>

s> =
4

3

ρ>

T>

=
4

3
(2 +

7

2
)(

π2

30
)T 3

>

• After annihilation, Tγ = T<  but, Tν = T>

s< =
4

3

ρ<

T<

=
4

3
(2)(

π2

30
)T 3

<

Tν = (4/11)1/3Tγ ! 1.9K



The CMB



Historical PerspectiveHistorical Perspective

Intimate connection with CMB

Conditions for BBN:
Require T > 100 keV ⇒ t < 200 s
σv(p + n →D + γ) ≈ 5 × 10−20 cm3/s

⇒ nB ~ 1/σvt ~ 1017 cm-3

Today:
nBo ~ 10-7 cm-3

and
nB ~ R-3 ~ T3

Predicts the CMB temperature
To = (nBo / nB )1/3 TBBN ~10 K

Alpher
Herman
Gamow



Some History:

Penzias and Wilson:
 Perfecting a radio antenna to track the Echo satellite

 found background noise which could not be eliminated.

Corresponding temperature:

T = 3.5± 1 K

Published in
“A Measurement of Excess Antenna Temperature at 4080 Hz”

Followed by an explanation by Dicke, Peebles Roll, & Wilkenson





Subsequently, many measurements ( ground and balloon based) 
showed that:

T = 2.7 - 3 K

Enter COBE. 

 Lingering doubts regarding distortions and aniotropies set 
aside.

T = 2.73 ± 0.01 K

nγ ~ T3 = 411 cm-3

ργ ~ T4 ≤ 10-4 ρc
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Anisotropies
• The Universe is NOT completely 

homogeneous and isotropic
– If <ρ> ~ 0.1 ρc = 10-30 g cm-3

– In our Galaxy,                              = 1044 gm 
in a volume π (30 kpc)2 300 pc = 1067 cm3

• ρ = 10-23 gm cm-3 = 107 <ρ>

• Imprint on CMB

M = 1011M!

δρ

ρ
∼

δT

T
How big?



Dipole (monopole removed)

COBE anisotropy results



Dipole (monopole removed)

Dipole removed



Dipole (monopole removed)

Dipole removed

Galaxy removed













WMAP view of the microwave background anisotropy



WMAP Improvement in Resolution



The Power spectrum

Expand Temperature map in spherical harmonics

1. Cosmic microwave background 1

1. COSMIC MICROWAVE BACKGROUND

Revised September 2003 by D. Scott (University of British Columbia)
and G.F. Smoot (UCB/LBNL).

1.1. Description of CMB Anisotropies

Observations show that the CMB contains anisotropies at the
10−5 level, over a wide range of angular scales. These anisotropies
are usually expressed by using a spherical harmonic expansion of the
CMB sky:

T (θ, φ) =
∑

!m

a!mY!m (θ, φ) .

The vast majority of the cosmological information is contained in
the temperature 2 point function, i.e., the variance as a function of
separation θ. Equivalently, the power per unit ln # is #

∑

m |a!m|2 /4π.

1.1.1. The Monopole:
The CMB has a mean temperature of Tγ = 2.725± 0.001 K (1σ) [5],

which can be considered as the monopole component of CMB maps,
a00. Since all mapping experiments involve difference measurements,
they are insensitive to this average level. Monopole measurements
can only be made with absolute temperature devices, such as the
FIRAS instrument on the COBE satellite [5]. Such measurements
of the spectrum are consistent with a blackbody distribution over
more than three decades in frequency. A blackbody of the measured
temperature corresponds to nγ = (2ζ(3)/π2)T 3

γ ! 411 cm−3 and

ργ = (π2/15)T 4
γ ! 4.64 × 10−34 g cm−3 ! 0.260 eVcm−3.

1.1.2. The Dipole:
The largest anisotropy is in the # = 1 (dipole) first spherical

harmonic, with amplitude 3.346 ± 0.017 mK [4]. The dipole is
interpreted to be the result of the Doppler shift caused by the solar
system motion relative to the nearly isotropic blackbody field, as
confirmed by measurements of the velocity field of local galaxies [6].

The dipole is a frame dependent quantity, and one can thus
determine the ‘absolute rest frame’ of the Universe as that in which
the CMB dipole would be zero.

1.1.3. Higher-Order Multipoles:
Excess variance in CMB maps at higher multipoles (# ≥ 2) is

interpreted as being the result of perturbations in the energy density
of the early Universe, manifesting themselves at the epoch of the last
scattering of the CMB photons. In the hot Big Bang picture, this
happens at a redshift z ! 1100, with little dependence on the details of
the model. The process by which the hydrogen and helium nuclei can
hold onto their electrons is usually referred to as recombination [9].

2 1. Cosmic microwave background

Before this epoch, the CMB photons are tightly coupled to the
baryons, while afterwards they can freely stream towards us.

Theoretical models generally predict that the a!m modes are
Gaussian random fields, and all tests are consistent with this
simplifying assumption [10]. With this assumption, and if there is
no preferred axis, then it is the variance of the temperature field
which carries the cosmological information, rather than the values of
the individual a!ms; in other words the power spectrum in ! fully
characterizes the anisotropies. The power at each ! is (2!+ 1)C!/(4π),
where C! ≡

〈

|a!m|2
〉

, and a statistically isotropic sky means that all
ms are equivalent. We use our estimators of the C!s to constrain
their expectation values, which are the quantities predicted by a
theoretical model. For an idealized full-sky observation, the variance
of each measured C! (the variance of the variance) is [2/(2! + 1)]C2

! .
This sampling uncertainty (known as cosmic variance) comes about
because each C! is χ2 distributed with (2! + 1) degrees of freedom for
our observable volume of the Universe. For partial sky coverage, fsky,
this variance is increased by 1/fsky and the modes become partially
correlated.

It is important to understand that theories predict the expectation
value of the power spectrum, whereas our sky is a single realization.
Hence the ‘cosmic variance’ is an unavoidable source of uncertainty
when constraining models; it dominates the scatter at lower !s, while
the effects of instrumental noise and resolution dominate at higher !s.

1.1.4. Angular Resolution and Binning:

There is no one-to-one conversion between the angle subtended by a
particular wavevector projected on the sky and multipole !. However,
a single spherical harmonic Y!m corresponds to angular variations of
θ ∼ π/!. CMB maps contain anisotropy information from the size
of the map (or in practice some fraction of that size) down to the
beam-size of the instrument, σ. One can think of the effect of a
Gaussian beam as rolling off the power spectrum with the function
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Cosmological Parameters:
of instantaneous and complete reionization this could equivalently be described by the redshift of

reionization zion.

The basic set of cosmological parameters is therefore

Hubble parameter h
Cosmological constant ΩΛ

Dark matter density Ωdm

Baryon density ΩB

Radiation density Ωrad

Neutrino density Ων

Density perturbation amplitude PR(k∗)
Density perturbation spectral index n
Tensor to scalar ratio r
Ionization optical depth τ

The spatial curvature does not appear in the list, because it can be determined from the other param-

eters using Eq. (5). Here and in future, we use the Ω always to refer to the present value.
As described in Section 3, models based on these ten parameters are able to give a good fit to the

complete set of high-quality data available at present, and indeed some simplification is possible.

Observations are consistent with spatial flatness, and indeed the inflation models so far described

automatically generate spatial flatness, so we can set Ωk = 0; the density parameters then must sum
to one and so one can be eliminated. The neutrino density is commonly not taken as an independent

parameter, as it can be related to the photon density using thermal physics arguments provided the

neutrino sector has the standard interactions. This reduces the standard parameter set to eight. In

addition, there is no observational evidence for the existence of tensor perturbations (though the

upper limits are quite weak), and so r could be set to zero.1 This reduces the parameter set to seven
parameters, which is the smallest set that can usefully be set against the present cosmological data

set. This model is referred to by various names, including ΛCDM, the concordance cosmology, and
the standard cosmological model.

Of these parameters, only Ωrad is accurately measured directly. The radiation density is domi-

nated by the energy in the cosmic microwave background, and the COBE FIRAS experiment has de-

termined its temperature to be T = 2.725±0.001 Kelvin, corresponding toΩrad = 2.47×10−5h−2.

In addition to this minimal set, there are a range of other parameters which might prove im-

portant in future as the dataset further improves, but for which there is so far no direct evidence,

allowing them to be set to a specific value. We discuss various speculative options in the next

section. For completeness at this point we mention one other interesting parameter, the helium frac-

tion, which is a non-zero parameter which can affect the microwave anisotropies at a subtle level.

Presently big bang nucleosynthesis provides the best measurement of this parameter and it is usu-

ally fixed in microwave anisotropy studies, but the data are just reaching a level where allowing its

variation may become mandatory.

1More controversially, one could argue that as no evidence against the Harrison–Zel’dovich spectrum has yet been

seen, then n could be set to one. We will however allow it to vary.
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21.4. Bringing observations together

Although it contains two ingredients—dark matter and dark energy—which have not
yet been verified by laboratory experiments, the ΛCDM model is almost universally
accepted by cosmologists as the best description of present data. The basic ingredients
are given by the parameters listed in Sec. 21.1.4, with approximate values of some of
the key parameters being Ωb ≈ 0.04, Ωdm ≈ 0.20, ΩΛ ≈ 0.76, and a Hubble constant
h ≈ 0.73. The spatial geometry is very close to flat (and often assumed to be precisely
flat), and the initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

Table 21.2: Parameter constraints reproduced from Spergel et al. [2], with some
additional rounding. All columns assume the ΛCDM cosmology with a power-law
initial spectrum, no tensors, spatial flatness, and a cosmological constant as dark
energy. Three different data combinations are shown to highlight the extent to
which this choice matters. The first column is WMAP3 alone, the second combines
this with 2dF, and the third column shows a combination of all datasets considered
in Ref. 2. The perturbation amplitude is specified via the derived parameter σ8; see
Ref. 2 for details. Uncertainties are shown at one sigma, and caution is needed in
extrapolating them to higher significance levels due to non-Gaussian likelihoods and
assumed priors.

WMAP alone WMAP + 2dF WMAP + all

Ωmh2 0.128 ± 0.008 0.126 ± 0.005 0.132 ± 0.004

Ωbh2 0.0223 ± 0.0007 0.0222 ± 0.0007 0.0219 ± 0.0007

h 0.73 ± 0.03 0.73 ± 0.02 0.704+0.015
−0.016

n 0.958 ± 0.016 0.948 ± 0.015 0.947 ± 0.015

τ 0.089 ± 0.030 0.083 ± 0.028 0.073+0.027
−0.028

σ8 0.76 ± 0.05 0.74 ± 0.04 0.78 ± 0.03

The most powerful single experiment is WMAP3, which on its own supports all these
main tenets. Values for some parameters, as given in Spergel et al. [2], are reproduced in
Table 21.2. This model presumes a flat Universe, and so ΩΛ is a derived quantity in this
analysis, with best-fit value ΩΛ = 0.76.

These constraints can be somewhat strengthened by adding additional datasets, as
shown in the Table. However, WMAP3 on its own is sufficiently powerful that inclusion
of other datasets only changes things at quite a detailed level. In our view, the most
robust present constraints are those from WMAP3 alone.
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