Dark Matter: From Cosmology to Colliders

•What is the Universe made of?

•We do not know the identity of > 90 % of the energy that fills the Universe

•Ordinary Matter or new particles

•Dark Energy

The Evidence:

- Observation:
 - Galactic Rotation Curves
 - Hot X-ray Gas
 - Gravitational Lensing
 - The CMB
- Theory
 - Growth of Galaxies
 - Nucleosynthesis
 - Inflation

Galactic Rotation Curves

Doppler measurements in spiral galaxies

Observe:

v(r)

Expect:

 $\frac{GM^2}{r^2} = \frac{KMv^2}{r}$

or $M(< r) = \frac{Kv^2r}{G}$

if M is constant

 $v^2 \sim 1/r$

NGC 2403

Expect:

 $\frac{GM^2}{r^2} = \frac{KMv^2}{r}$

or $M(\langle r) = \frac{Kv^2r}{G}$

if M is constant

 $v^2 \sim 1/r$

if v is constant

 $M \sim r$

 $\Rightarrow \text{Existence of Dark Matter} \underset{NGC 3198}{\overset{[1]}{\Rightarrow}} \overset{[1]}{\underset{(kpc)}{\overset{[1]}{\Rightarrow}}} \overset{[1]}{\underset{(kpc)}{\overset{[1]}{\overset$

Hot X-ray Gas

M87

Bound Gas (T > 10^{6} K) $\Rightarrow M_{T} > 10^{13}$ M $_{\odot}$

X-rays

Virgo

A2029

NGC720

0024+1654

Wittman et al.

The Bullet Cluster

WMAP

How Much Dark Matter

WMAP 5

Dunkley etal

Precise bounds on matter content

 $\Omega_{\rm m}h^2 = 0.1326 \pm 0.0063$ $\Omega_{\rm b}h^2 = 0.0227 \pm 0.0006$

$$Ωcdmh2 = 0.1099 ± 0.0062$$
or
 $Ωcdm h2 = 0.0975 - 0.1223$ (2 σ)

Cosmological Parameters:

$\Omega=1$.011 \pm 0.012

Growth of Density Fluctuations

Density perturbation $\delta \rho$

Jean's criteria

Growth for $k > k_J$

Growth for $M > M_J$ Jean's Mass

Depends on Equation of State

- Dark Matter must be:
 - Stable (or very long-lived)
 - Neutral

Candidates

- Baryons
 - Cluster, produce heavy elements, ... $\Omega_{\rm B} h^2 = 0.0224$
- Neutrinos – We know too much ($0.0005 < \Omega_v h^2 < 0.0076$)
- Axions
 - Solve the strong CP problem, scale is not well motivated
- LSP
 - Natural stable dark matter candidate with good relic density

Neutrinos

Light v's ($m_v < 1 \text{ MeV}$): Left over with $n_v \approx n_\gamma$ Heavy v's ($m_v > 1 \text{ MeV}$): Left over from annihilations

Neutrinos

• Relic Density limit on light v masses:

$$egin{aligned} &
ho_
u &= rac{3}{11}rac{g_
u}{2}m_
u n_\gamma \ &
ho_
u h^2 &\simeq 0.01m_
u (eV)rac{g_
u}{2} \end{aligned}$$

• WMAP +2df + limit

 $m_{tot} < 0.7 eV \Longrightarrow \Omega h^2 < 0.0076$

• Heavy neutrinos (m > GeV) excluded as dark matter

Beyond the Standard Model (add new symmetries, particles and/or interactions)

- Solutions to the strong CP problem
 - Axions
- Supersymmetry
 - Neutralinos

Guage Hierarchy Problem $M_P \approx 10^{19}$ GeV $M_X \approx 10^{16}$ GeV $M_W \approx 10^2$ GeV

> Why are these scales different? Do they stay different?

Running of the Gauge couplings in the standard model

Running of the Gauge couplings in the supersymmetric standard model

What is the MSSM

1) Add minimal number of new particles: Partners for all SM particles + 1 extra Higgs EW doublet.

2) Add minimal number of new interactions: Impose R-parity to eliminate many UNWANTED interactions.

 $R = (-1)^{3B+L+2S}$

The MSSM

 $W = \epsilon_{ij} [y_e H_1^j L^i e^c + y_d H_1^j Q^i d^c + y_u H_2^i Q^j u^c] + W_\mu$ $W_\mu = \epsilon_{ij} \mu H_1^i H_2^j$

R-Parity:

$$W_{R} = \frac{1}{2} \lambda^{ijk} L_{i} L_{j} e_{k}^{c} + \lambda^{\prime ijk} L_{i} Q_{j} d_{k}^{c} + \frac{1}{2} \lambda^{\prime\prime ijk} u_{i}^{c} d_{j}^{c} d_{k}^{c} + \mu^{\prime i} L_{i} H_{u}$$

Contains B and L violating operators

proton lifetime

$$\Gamma_p^{-1} \sim \frac{\tilde{m}^4}{m_p^5} \sim 10^8 \text{GeV}^{-1}$$

- All New particles have R = -1 E.g.:
- γ : S=1/2; B=L=0; R=(-1)¹ = -1
- e: S=0; B=0; L= -1; R= $(-1)^{-1} = -1$
- u: S=0; B=1/3; L=0; R=(-1)¹ = -1

R-Parity Conservation \Rightarrow

The Lightest Supersymmetric Particle (LSP) is stable

SUSY Dark Matter

MSSM and R-Parity

Stable DM candidate

1) Neutralinos

$$\chi_i = lpha_i \widetilde{B} + eta_i \widetilde{W} + eta_i \widetilde{H}_1 + eta_i \widetilde{H}_2$$

2) Sneutrino

Excluded (unless add L-violating terms)

3) Other:

Axinos, Gravitinos, etc

Neutralinos

Mass matrix

 $(ilde{B}, ilde{W}^3, ilde{H}^0_1, ilde{H}^0_2) egin{pmatrix} M_1 & 0 & rac{-g_1v_1}{\sqrt{2}} & rac{g_1v_2}{\sqrt{2}} & rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}} & rac{g_2v_1}{\sqrt{2}} & rac{-g_2v_2}{\sqrt{2}} & rac{1}{\sqrt{2}} & rac{1}{\sqrt{2}}$

- Depends on $M_{1/2}$, μ , tan β
- Assume $M_1 = M_2 = M_3$ @ GUT scale
- Relic density also depends on m_0 and m_A

Parameters

Higgs mixing mass: μ Ratio of Higgs vevs: tan β Gaugino masses: M_i Soft scalar masses: m_0

Bi and Trilinear Terms: B and A_i Phases: θ_{μ} , θ_{A}

Unification Conditions

- Gaugino masses: $M_i = m_{1/2}$
- Scalar masses: $m_i = m_0$

predict µ, B

• Trilinear terms: $A_i = A_0$

mSugra Conditions

- Gravitino masses: $m_{3/2} = m_0$
- Bilinear term: $B_0 = A_0 m_0$

predict μ , tan β

CMSSM Spectra

Unification to rich spectrum +**EWSB**

Running Mass (GeV)

The Relic Density

At high temperatures $T \gg m\chi$; χ 's in equilibrium $\Gamma > H$ $n\chi \sim n\gamma$ $\Gamma \sim n\sigma v \sim T^3 \sigma v$; $HM_p \sim \sqrt{\rho} \sim T^2$ As $T < m\chi$; annihilations drop $n\chi$

 $n\chi \sim e^{-m\chi/T} n\gamma$

Until freeze-out, $\Gamma < H$

 $n\chi/n\gamma \sim constant$

Annihilation Cross sections:

$$\tilde{B}\tilde{B} \to f\bar{f}$$

$$\begin{aligned} \langle \sigma v \rangle &= (1 - \frac{m_f^2}{m_{\tilde{B}}^2})^{1/2} \frac{g_1^4}{128\pi} \left[(Y_L^2 + Y_R^2)^2 (\frac{m_f^2}{\Delta_f^2}) \right. \\ &+ (Y_L^4 + Y_R^4) (\frac{4m_{\tilde{B}}^2}{\Delta_f^2}) (1 + \dots) x \right] \end{aligned}$$

 $\equiv a + bx$

 $\Delta_f \equiv m_{\tilde{f}}^2 + m_{\tilde{B}}^2 - m_f^2,$

The Relic Density:

$$\frac{dn}{dt} = -3\frac{\dot{R}}{R}n - \langle \sigma v \rangle (n^2 - n_0^2)$$

$$\frac{df}{dx} = m_{\chi} \left(\frac{1}{90}\pi^2 \kappa^2 N\right)^{1/2} (f^2 - f_0^2)$$

 $f = n/T^3$

$$\Omega_{\chi} h^2 \simeq 1.9 \times 10^{-11} \left(\frac{T_{\chi}}{T_{\gamma}}\right)^3 N_f^{1/2} \left(\frac{\text{GeV}}{ax_f + \frac{1}{2}bx_f^2}\right)$$

What is (T_{χ}/T_{γ}) ?

$$x_f \approx 1/20$$
 $N_f \approx N(m_\chi/20)$

e.g., for $m_{\chi} = 100 \ GeV$, $T_f \approx 5 GeV$ $N_f \approx 345/4$

$$(T_{\chi}/T_{\gamma})^3 = (43/4N_f) \times (4/11)$$

Typical Regions

m_{1/2}

 $m_{\chi} \approx 0.4 m_{1/2}$

Coannihilations

Important when stau mass close to neutralino mass

Coannihilations

total number density

$$n \equiv \sum_{i} n_i \; ,$$

and the effective annihilation cross section as

$$\langle \sigma_{\rm eff} v_{\rm rel} \rangle \equiv \sum_{ij} \frac{n_{0,i} n_{0,j}}{n_0^2} \langle \sigma_{ij} v_{\rm rel} \rangle \; .$$

proportional to:

$$g_{\text{eff}} \equiv \sum_{i} g_i (m_i/m_1)^{3/2} e^{-(m_i - m_1)/T}$$

Griest & Seckel

Funnel Regions

Important when heavy Higgs mass is close to double the neutralino mass

FOCUS POINT REGION

As m₀ gets very large, RGE's force μ to 0, allowing neutralino to become Higgsino like with an acceptable relic density.

Feng, Matchev, Moroi

Effect of WMAP Densities

Ellis, Olive, Santoso, Spanos

Effect of WMAP Densities

Ellis, Olive, Santoso, Spanos

Effect of WMAP Densities

Ellis, Olive, Santoso, Spanos

MCMC ANALYSIS

Observable	Observable
$\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z})$	$m_{\rm W} \; [{ m GeV}/c^2]$
$m_{\rm Z} \; [{\rm GeV}/c^2]$	$a_{\mu}^{\exp} - a_{\mu}^{\mathrm{SM}}$
$\Gamma_{\rm Z} [{\rm GeV}/c^2]$	$m_{\rm h} \; [{\rm GeV}/c^2]$
$\sigma_{\rm had}^0 [{\rm nb}]$	$- BR_{b\to s\gamma}^{exp} / BR_{b\to s\gamma}^{SM}$
R_l	- $m_{\rm t} [{\rm GeV}/c^2]$
$A_{\rm fb}(\ell)$	- $\Omega_{\rm CDM} h^2$
$R_{\rm b}$	$- BR(B_s \to \mu^+ \mu^-)$
R _c	$- BR^{exp}_{B\to\tau\nu}/BR^{SM}_{B\to\tau\nu}$
$A_{ m fb}({ m b})$	$\mathrm{BR}^{\mathrm{exp}}_{B_d \to \ell \ell} / \mathrm{BR}^{\mathrm{SM}}_{B_d \to \ell \ell}$
$A_{ m fb}({ m c})$	$BR^{\exp}_{B\to X_s\ell\ell}/BR^{SM}_{B\to X_s\ell\ell}$
Ab	$\underline{BR}_{K\to\mu\nu}^{\exp}/BR_{K\to\mu\nu}^{SM}$
Ac	$- BR^{exp}_{K \to \pi \nu \bar{\nu}} / BR^{SM}_{K \to \pi \nu \bar{\nu}}$
$A_{\ell}(\text{SLD})$	$\Delta m_s^{ m exp}/\Delta m_s^{ m SM}$
$\sin^2 heta_{ m w}^\ell(Q_{ m fb})$	$- \frac{(\Delta m_s^{\exp} / \Delta m_s^{\rm SM})}{(\Delta m_s^{\exp} / \Delta m_s^{\rm SM})}$
	$\frac{(-m_d)}{\Delta m^{\exp}/\Delta m^{SM}}$

 $\Delta m_K / \Delta m_K$

Long list of observables to constrain CMSSM parameter space

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i} \frac{(f_{\mathrm{SM}_{i}}^{\mathrm{obs}} - f_{\mathrm{SM}_{i}}^{\mathrm{fit}})^{2}}{\sigma(f_{\mathrm{SM}_{i}})^{2}}$$

See also: Balz and Gondolo; Allanach, Lester, and Weber; deAustri, Trotta, and Roszkowski

RESULT FOR CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein

LHC REACH VS CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein

IMPACT OF CDM

Sensitivity to uncertainties

WHERE IS THE FP? $\Delta \chi^2 vs m_0$

Without g-2

THE CMSSM WITH AND WITH g-2

With g-2

Without g-2

Effective Four Fermion Lagrangian

$$\begin{split} L &= \bar{\chi} \gamma^{\mu} \gamma^{5} \chi \, \bar{q}_{i} \gamma^{\mu} (\alpha_{1i} + \alpha_{2i} \gamma^{5}) \, q_{i} \\ &+ \alpha_{3i} \, \bar{\chi} \chi \, \bar{q}_{i} \, q_{i} + \alpha_{4i} \, \bar{\chi} \, \gamma^{5} \chi \, \bar{q}_{i} \, \gamma^{5} \, q_{i} \\ &+ \alpha_{5i} \, \bar{\chi} \chi \, \bar{q}_{i} \, \gamma^{5} \, q_{i} + \alpha_{6i} \, \bar{\chi} \, \gamma^{5} \chi \, \bar{q}_{i} \, q_{i} \end{split}$$
The terms involving- α_{1i} ,- α_{4i} ,- α_{5i} ,-and- α_{6i} lead to velocity dependent elastic cross sections.

Remaining terms are:

the spin dependent coefficient

 α_{2i}

and-scalar-coefficient-

DIRECT DETECTION IN THE CMSSM

Ellis, Olive, Savage

SPIN AND SCALAR CROSS SECTIONS AT TAN $\beta = 10$

Ellis, Olive, Sandick

DIRECT DETECTION IN THE CMSSM

Ellis, Olive, Sandick

 $\Delta \chi^2$ vs elastic scattering

Uncertainties from hadronic matrix elements

The scalar cross section

$$\sigma_3 = \frac{4m_r^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2$$

where

$$\frac{f_p}{m_p} = \sum_{q=u,d,s} f_{Tq}^{(p)} \frac{\alpha_{3q}}{m_q} + \frac{2}{27} f_{TG}^{(p)} \sum_{c,b,t} \frac{\alpha_{3q}}{m_q}$$

and

$$m_p f_{Tq}^{(p)} \equiv \langle p | m_q \bar{q} q | p \rangle \equiv m_q B_q$$

determined by

$$\sigma_{\pi N} \equiv \Sigma = \frac{1}{2}(m_u + m_d)(B_u + B_d)$$

The strangeness contribution to the proton mass

$$y = \frac{2B_s}{B_u + B_d} = \frac{(m_u + m_d) \langle p | s\bar{s} | p \rangle}{\Sigma}$$
$$= 1 - \frac{\sigma_0}{\Sigma} \qquad \sigma_0 = 36 \pm 7 \text{ MeV}$$

For $\Sigma = 45$ MeV, y = 0.2 $f_{T_u} = 0.020$ $f_{T_d} = 0.026$ $f_{T_s} = 0.117$ For $\Sigma = 64$ MeV, y = 0.44 $f_{T_u} = 0.027$ $f_{T_d} = 0.039$ $f_{T_s} = 0.363$ For $\Sigma = 36$ MeV, y = 0

 $f_{T_u} = 0.016$ $f_{T_d} = 0.020$ $f_{T_s} = 0.$

In addition,

- Direct Detection signals are proportional to ϱ_0 $\sigma_{\chi N}$
- The local density is Q₀ typically assumed to be 0.3 GeV/cm⁻³, but 0.2 0.4 GeV/cm⁻³ is reasonable.
- Models of galaxy formation may allow values as low as 0.04 GeV/cm⁻³.

Benchmarks as a function of $\Sigma_{\pi N}$

Ellis, Olive, Savage

Summary

- •Dark Matter component is large ($\Omega h^2 = 0.11$)
- •CMSSM 4+ parameter theory testable at LHC
- •mSUGRA 3+ parameter subset of the CMSSM
 - often predicts GDM
- •CMSSM has several 'regions' in which the correct relic density is obtained
- • χ^2 analysis (frequentist) shows strong preference for low (testable) values of m_{1/2}, m₀, and tan β