
Dark Matter: From Cosmology to Colliders

•What is the Universe made of?

•We do not know the identity of > 90 % of the energy that 
fills the Universe

•Ordinary Matter or new particles

•Dark Energy



The Evidence:
• Observation:

– Galactic Rotation Curves
– Hot X-ray Gas
– Gravitational Lensing
– The CMB

• Theory
– Growth of Galaxies
– Nucleosynthesis
– Inflation



Galactic Rotation Curves

Doppler measurements in spiral galaxies

Observe: v(r)
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X-rays

Hot X-ray Gas

M87

Mell < 1% MT
MGas < 5% MT

Bound Gas (T > 106 K) 
⇒  MT  > 1013M !



Virgo Coma
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Abell 781 Wittman et al.



The Bullet Cluster



WMAP

Position of 1st peak   
⇒    Ω = 1



WMAP 5     Dunkley etal
 Precise bounds on matter content

                                  
Ωmh2 = 0.1326 ± 0.0063      Ωbh2 = 0.0227 ± 0.0006

                              

     Ωcdmh2 = 0.1099 ± 0.0062
or

Ωcdm h2 = 0.0975 - 0.1223  (2 σ)

How Much Dark Matter





Cosmological Parameters:

Ω =1 .011± 0.012



Growth of Density Fluctuations

Density perturbation δρ

Jean’s criteria

Growth for  k > kJ

 Growth for M > MJ     Jean’s Mass  

 Depends on Equation of State

R

M

R

δρ/ρ

MJ



• Dark Matter must be:

• Stable (or very long-lived)

• Neutral



•     Baryons
– Cluster, produce heavy elements, …ΩBh2 = 0.0224

• Neutrinos
– We know too much (0.0005 < Ωνh

2 < 0.0076)

• Axions
– Solve the strong CP problem, scale is not well motivated

• LSP
– Natural stable dark matter candidate with good relic density

• …

Candidates
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Neutrinos
Light ν’s (mν < 1 MeV):  Left over with nν ≈ nγ
Heavy ν’s (mν > 1 MeV):  Left over from annihilations



• Relic Density limit on light ν masses:

• WMAP +2df +  limit

• Heavy neutrinos (m > GeV) excluded as dark 
matter 

Neutrinos

Ωνh
2 ! 0.01mν(eV )

gν

2

ρν =
3

11

gν

2
mνnγ

mtot < 0.7eV =⇒ Ωh2 < 0.0076



Beyond the Standard Model
(add new symmetries, particles and/or interactions)

• Solutions to the strong CP problem

- Axions

• Supersymmetry

- Neutralinos

.

.

.



Guage Hierarchy Problem
MP  ≈ 1019   GeV

MX  ≈ 1016  GeV

MW  ≈ 102   GeV

Why are these scales different?
Do they stay different?



Running of the Gauge couplings
in the standard model

Running of the Gauge couplings
in the supersymmetric 

standard model



What is the MSSM

1) Add minimal number of new particles:  
Partners for all SM particles + 1 extra Higgs 

EW doublet.

2) Add minimal number of new interactions: 
Impose R-parity to eliminate many 

UNWANTED interactions.

R = (-1)3B+L+2S



The MSSM

• a soft supersymmetry breaking trilinear scalar interaction

(Ay)ijkφiφjφk

i

j

k

We are now finally in a position to put all of these pieces together and discuss realistic
supersymmetric models.

3 The Minimal Supersymmetric Standard Model

To construct the supersymmetric standard model [14] we start with the complete set of chiral
fermions in (30), and add a scalar superpartner to each Weyl fermion so that each of the fields
in (30) represents a chiral multiplet. Similarly we must add a gaugino for each of the gauge
bosons in the standard model making up the gauge multiplets. The minimal supersymmetric
standard model (MSSM) [15] is defined by its minimal field content (which accounts for the
known standard model fields) and minimal superpotential necessary to account for the known
Yukawa mass terms. As such we define the MSSM by the superpotential

W = εij [yeH
j
1L

iec + ydH
j
1Q

idc + yuH
i
2Q

juc] + Wµ (82)

where
Wµ = εijµH i

1H
j
2 (83)

In (82), the indices, {ij}, are SU(2)L doublet indices. The Yukawa couplings, y, are all 3×3
matrices in generation space. Note that there is no generation index for the Higgs multiplets.
Color and generation indices have been suppressed in the above expression. There are two
Higgs doublets in the MSSM. This is a necessary addition to the standard model which can
be seen as arising from the holomorphic property of the superpotential. That is, there would
be no way to account for all of the Yukawa terms for both up-type and down-type multiplets
with a single Higgs doublet. To avoid a massless Higgs state, a mixing term Wµ must be
added to the superpotential.

From the rules governing the interactions in supersymmetry discussed in the previous
section, it is easy to see that the terms in (82) are easily identifiable as fermion masses if the
Higgses obtain vacuum expectation values (vevs). For example, the first term will contain
an interaction which we can write as

−
1

2

∂2W

∂L∂ec
(ψLψec + ψ†

Lψ†
ec)

= −
1

2
yeH

0
1 ( eec + e†ec†) (84)
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having used the identity, −χσµξ† = ξ†σµχ.
Instead, it is sometimes convenient to consider a four-component Majorana spinor. This

can be done rather easily from the above conventions and taking ξ = χ, so that

ΨM =
(

ξα

ξ†α̇

)
ΨM = ( ξα ξ†α̇ ) (28)

and the Lagrangian can be written as

LM = −
i

2
ΨMγµ∂µΨM −

1

2
MΨMΨM

= −iξ†σµ∂µξ −
1

2
M(ξξ + ξ†ξ†) (29)

The massless representations for supersymmetry are now easily constructed. Let us
consider here N = 1 supersymmetry, i.e., a single supercharge Qα. For the massless case,
we can choose the momentum to be of the form Pµ = 1

4(−1, 0, 0, 1). As can be readily found
from the anticommutation relations (22), the only non-vanishing anticommutation relation
is {Q1, Q†

1̇} = 1. Consider then a state of given spin, |λ〉 such that Q†
1̇|λ〉 = 0. (If it is not

0, then due to the anticommutation relations, acting on it again with Q†
1̇ will vanish.) From

the state |λ〉, it is possible to construct only one other nonvanishing state, namely Q1|λ〉 -
the action of any of the other components of Qα will vanish as well. Thus, if the state |λ〉
is a scalar, then the state Q1|λ〉 will be a fermion of spin 1/2. This (super)multiplet will be
called a chiral multiplet. If |λ〉 is spin 1/2, then Q1|λ〉 is a vector of spin 1, and we have a
vector multiplet. In the absence of gravity (supergravity), these are the only two types of
multiplets of interest.

For N > 1, one can proceed in an analogous way. For example, with N = 2, we begin
with two supercharges Q1, Q2. Starting with a state |λ〉, we can now obtain the following:
Q1

1|λ〉, Q2
1|λ〉, Q1

1Q
2
1|λ〉. In this case, starting with a complex scalar, one obtains two fermion

states, and one vector, hence the vector (or gauge) multiplet. One could also start with a
fermion state (say left-handed) and obtain two complex scalars, and a right-handed fermion.
This matter multiplet however, is clearly not chiral and is not suitable for phenomenology.
This problem persists for all supersymmetric theories with N > 1, hence the predominant
interest in N = 1 supersymmetry.

Before we go too much further, it will be useful to make a brief connection with the
standard model. We can write all of the standard model fermions in a two-component Weyl
basis. The standard model fermions are therefore

Qi =
(

u
d

)

L

,
(

c
s

)

L

,
(

t
b

)

L

uc
i = uc

L, cc
L, tcL

dc
i = dc

L, sc
L, bc

L

6
Li =

(
νe

e

)

L

,
(

νµ

µ

)

L

,
(

ντ

τ

)

L

ec
i = ec

L, µc
L, τ c

L (30)

Note that the fields above are all left-handed. Color indices have been suppressed. From
(29), we see that we would write the fermion kinetic terms as

Lkin = −iQ†
iσ

µ∂µQi − iuc†
i σµ∂µuc

i − · · · (31)

As indicated above and taking the electron as an example, we can form a Dirac spinor

Ψe =
(

eL

ec†
L

)
=

(
eL

eR

)
(32)

A typical Dirac mass term now becomes

ΨeΨe = ec
LeL + e†Lec

L
† = e†ReL + e†LeR (33)

As we introduce supersymmetry, the field content of the standard model will necessarily be
extended. All of the standard model matter fields listed above become members of chiral
multiplets in N = 1 supersymmetry. Thus, to each of the (Weyl) spinors, we assign a
complex scalar superpartner. This will be described in more detail when we consider the
MSSM.

To introduce the notion of a supersymmetric transformation, let us consider an infinites-
imal spinor ξα with the properties that ξ anticommutes with itself and the supercharge Q,
but commutes with the momentum operator

{ξα, ξβ} = {ξα, Qβ} = [Pµ, ξ
α] = 0 (34)

It then follows that since both ξ and Q commute with Pµ, the combination ξQ also commutes
with Pµ or

[Pµ, ξQ] = [Pµ, ξ
†Q†] = 0 (35)

where by ξQ we mean ξQ = ξαQα = εαβξαQβ = −εαβQβξα = εβαQβξα = Qξ. Similarly,

ξ†Q† = ξ†α̇Q†α̇
. Also note that ξαQα = −ξαQα. Finally, we can compute the commutator of

ξQ and ξ†Q†,

[ξQ, ξ†Q†] = ξQξ†Q† − ξ†Q†ξQ = ξαQαξ†β̇Q†β̇ − ξ†
β̇
Q†β̇

ξαQα

= ξαQαQ†
β̇ξ

†β̇ − ξ†β̇Q†
β̇Qαξα

= 2ξασµ
αβ̇

ξ†β̇Pµ − ξαQ†
β̇Qαξ†β̇ − ξ†β̇Q†

β̇Qαξα

= 2ξσµξ†Pµ (36)

We next consider the transformation property of a scalar field, φ, under the infinitesimal
ξ

δξφ = (ξαQα + ξ†β̇Q†β̇
)φ (37)
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R-Parity:

be directly constructed from the F - and D-terms which break supersymmetry. Consider the
mass matrix for a gaugino λa, and chiral fermion ψi

(
0

√
2g(〈φ∗〉T a)i

√
2g(〈φ∗〉T a)j 〈W ij〉

)
(129)

where we do not assume any supersymmetry breaking gaugino mass. Consider further, the
fermion

G̃ = ( 〈Da〉/
√

2, 〈Fi〉 ) (130)

in the (λ, ψ) basis. Now from the condition (77) and the requirement that we are sitting at
the minimum of the potential so that

∂V

∂φj
= 0 ↔ g(〈φ∗〉T a)i + FjW

ij = 0 (131)

we see that the fermion G̃ is massless, that is, it is annihilated by the mass matrix (129).
The Goldstino state G̃ is physical so long as one or both 〈D〉 %= 0, or 〈F 〉 %= 0. This is the
analog of the Goldstone mechanism for the breaking of global symmetries.

3.6 R-Parity

In defining the supersymmetric standard model, and in particular the minimal model or
MSSM, we have limited the model to contain a minimal field content. That is, the only new
fields are those which are required by supersymmetry. In effect, this means that other than
superpartners, only the Higgs sector was enlarged from one doublet to two. However, in
writing the superpotential (82), we have also made a minimal choice regarding interactions.
We have limited the types of interactions to include only those required in the standard
model and its supersymmetric generalization.

However, even if we stick to the minimal field content, there are several other super-
potential terms which we can envision adding to (82) which are consistent with all of the
symmetries (in particular the gauge symmetries) of the theory. For example, we could con-
sider

WR =
1

2
λijkLiLje

c
k + λ′ijkLiQjd

c
k +

1

2
λ′′ijkuc

id
c
jd

c
k + µ′iLiHu (132)

In (132), the terms proportional to λ, λ′, and µ′, all violate lepton number by one unit. The
term proportional to λ′′ violates baryon number by one unit.

Each of the terms in (132) predicts new particle interactions and can be to some extent
constrained by the lack of observed exotic phenomena. However, the combination of terms
which violate both baryon and lepton number can be disastrous. For example, consider the
possibility that both λ′ and λ′′ were non-zero. This would lead to the following diagram
which mediates proton decay, p → e+π0, µ+π0, νπ+, νK+ etc. Because of the necessary
antisymmetry of the final two flavor indices in λ′′, there can be no d̃c exchange in this
diagram. The rate of proton decay as calculated from this diagram will be enormous due to
the lack of any suppression by superheavy masses. There is no GUT or Planck scale physics
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Contains B and L violating operators

d

u

u u

Q
*

L
*

b   or s
c c

!''
!'

*

~~

Figure 3: R-parity violating contribution to proton decay.

which enters in, this is a purely (supersymmetric) standard model interaction. The (inverse)
rate can be easily estimated to be

Γ−1
p ∼

m̃4

m5
p

∼ 108GeV−1 (133)

assuming a supersymmetry breaking scale of m̃ of order 100 GeV. This should be compared
with current limits to the proton life-time of >∼ 1063 GeV−1.

It is possible to eliminate the unwanted superpotential terms by imposing a discrete
symmetry on the theory. This symmetry has been called R-parity [22], and can be defined
as

R = (−1)3B+L+2s (134)

where B, L, and s are the baryon number, lepton number, and spin respectively. With this
definition, it turns out that all of the known standard model particles have R-parity +1.
For example, the electron has B = 0, L = −1, and s = 1/2, the photon as B = L = 0
and s = 1. In both cases, R = 1. Similarly, it is clear that all superpartners of the known
standard model particles have R = −1, since they must have the same value of B and L but
differ by 1/2 unit of spin. If R-parity is exactly conserved, then all four superpotential terms
in (132) must be absent. But perhaps an even more important consequence of R-parity is
the prediction that the lightest supersymmetric particle or LSP is stable. In much the same
way that baryon number conservation predicts proton stability, R-parity predicts that the
lightest R = −1 state is stable. This makes supersymmetry an extremely interesting theory
from the astrophysical point of view, as the LSP naturally becomes a viable dark matter
candidate [23, 19]. This will be discussed in detail in the 6th lecture.

4 The Constrained MSSM and Supergravity

As a phenomenological model, while the MSSM has all of the ingredients which are necessary,
plus a large number of testable predictions, it contains far too many parameters to pin down
a unique theory. Fortunately, there are a great many constraints on these parameters due
to the possibility of exotic interactions as was the case for additional R-violating superpo-
tential terms. The supersymmetry breaking sector of the theory contains a huge number of
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All New particles have R = -1
E.g.:

γ: S=1/2;  B=L=0;  R=(-1)1 = -1

e: S=0;  B=0; L= -1;  R=(-1)-1 = -1

u: S=0;  B=1/3; L=0;  R=(-1)1 = -1
R-Parity Conservation ⇒
The Lightest Supersymmetric Particle (LSP) is stable
     e                          γ

                                 e

~~



MSSM and R-Parity 
Stable DM candidate

1) Neutralinos

2) Sneutrino
         Excluded (unless add L-violating terms)

3) Other:
        Axinos, Gravitinos, etc

χi = αiB̃ + βiW̃ + γiH̃1 + δiH̃2

SUSY Dark MatterSUSY Dark Matter



• Depends on M1/2, µ, tan β

•  Assume M1 = M2 = M3 @ GUT scale

• Relic density also depends on m0 and mA

Neutralinos

(B̃, W̃ 3, H̃0
1 , H̃0

2)
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Mass matrix



Parameters

Higgs mixing mass: µ
Ratio of Higgs vevs: tan β 
Gaugino masses: Mi
Soft scalar masses: mo

Bi and Trilinear Terms: B and Ai
Phases: θµ, θA



Unification Conditions
• Gaugino masses: Mi = m1/2

• Scalar masses: mi = m0

• Trilinear terms: Ai = A0

 predict µ, B

mSugra Conditions
•   Gravitino masses: m3/2 = m0

• Bilinear term: B0 = A0 - m0  predict µ, tan β



CMSSM Spectra

Unification to 
rich spectrum

+
EWSB

Falk



The Relic DensityThe Relic Density
At high temperatures T >>mχ ;    

     χ’s in equilibrium   Γ > H      nχ ~ nγ
Γ ~ nσv~ T3σv ;  HMp ~ √ρ ~ Τ2

As T < mχ ; annihilations drop nχ
nχ ~ e-mχ/T nγ

Until freeze-out, Γ < H           nχ/nγ ∼ constant

f

B~

f
_

B~

f~

T ~ mχ t

nχ/nγ

1



Annihilation Cross sections:

Because of the p-wave suppression associated with Majorana fermions, the s-wave part
of the annihilation cross-section is suppressed by the outgoing fermion masses. This means
that it is necessary to expand the cross-section to include p-wave corrections which can be
expressed as a term proportional to the temperature if neutralinos are in equilibrium. Unless
the B̃ mass happens to lie near mZ/2 or mh/2, in which case there are large contributions to
the annihilation through direct s-channel resonance exchange, the dominant contribution to
the B̃B̃ annihilation cross section comes from crossed t-channel sfermion exchange. In the
absence of such a resonance, the thermally-averaged cross section for B̃B̃ → f f̄ takes the
generic form

〈σv〉 = (1 −
m2

f

m2
B̃

)1/2 g4
1

128π

[

(Y 2
L + Y 2

R)2(
m2

f

∆2
f

)

+ (Y 4
L + Y 4

R)(
4m2

B̃

∆2
f

)(1 + ...) x

]

≡ a + bx (214)

where YL(R) is the hypercharge of fL(R), ∆f ≡ m2
f̃

+ m2
B̃
− m2

f , and we have shown only the

leading P -wave contribution proportional to x ≡ T/mB̃. Annihilations in the early Universe
continue until the annihilation rate Γ & σvnχ drops below the expansion rate, H . For
particles which annihilate through approximate weak scale interactions, this occurs when
T ∼ mχ/20. Subsequently, the relic density of neutralinos is fixed relative to the number of
relativistic particles.

As noted above, the number density of neutralinos is tracked by a Boltzmann-like equa-
tion,

dn

dt
= −3

Ṙ

R
n − 〈σv〉(n2 − n2

0) (215)

where n0 is the equilibrium number density of neutralinos. By defining the quantity f =
n/T 3, we can rewrite this equation in terms of x, as

df

dx
= mχ

(
1

90
π2κ2N

)1/2

(f 2 − f 2
0 ) (216)

The solution to this equation at late times (small x) yields a constant value of f , so that
n ∝ T 3. The final relic density expressed as a fraction of the critical energy density can be
written as [19]

Ωχh2 & 1.9 × 10−11

(
Tχ

Tγ

)3

N1/2
f

(
GeV

axf + 1
2bx

2
f

)

(217)

where (Tχ/Tγ)3 accounts for the subsequent reheating of the photon temperature with respect
to χ, due to the annihilations of particles with mass m < xfmχ [49]. The subscript f refers
to values at freeze-out, i.e., when annihilations cease.

In Figure 11 [105], regions in the M2 − µ plane (rotated with respect to Figure 9) with
tan β = 2, and with a relic abundance 0.1 ≤ Ωh2 ≤ 0.3 are shaded. In Figure 11, the
sfermion masses have been fixed such that m0 = 100 GeV (the dashed curves border the
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What is (Tχ/Tγ) ?

xf ≈ 1/20 Nf ≈ N(mχ/20)

e.g., for mχ = 100 GeV, Tf ≈ 5GeV Nf ≈ 345/4

(Tχ/Tγ)3 = (43/4Nf )× (4/11)
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Figure 13. The light-shaded ‘bulk’ area is the cosmologically preferred region with
0.1 ≤ Ωh2 ≤ 0.3. The light dashed lines show the location of the cosmologically pre-
ferred region if one ignores coannihilations with the light sleptons. In the dark shaded
region in the bottom right, the LSP is the τ̃1, leading to an unacceptable abundance
of charged dark matter. Also shown is the isomass contour mχ± = 104 GeV and
mh = 110, 114 GeV, as well as an indication of the slepton bound from LEP.

The constraint imposed by measurements of b → sγ 129 also exclude
small values of m1/2. These measurements agree with the Standard Model,
and therefore provide bounds on MSSM particles, such as the chargino and
charged Higgs masses, in particular. Typically, the b → sγ constraint is
more important for µ < 0, but it is also relevant for µ > 0, particularly when
tanβ is large. The BNL E821 experiment reported last year a new mea-
surement of aµ ≡ 1

2 (gµ−2) which deviated by 2.6 standard deviations from
the best Standard Model prediction available at that time130. However, it
had been realized that the sign of the most important pseudoscalar-meson
pole part of the light-by-light scattering contribution131 to the Standard
Model prediction should be reversed, which reduces the apparent experi-
mental discrepancy to about 1.6 standard deviations (δaµ×1010 = 26±16).
The largest contribution to the errors in the comparison with theory was
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poles, thresholds and in regions where the LSP is nearly degenerate with
the next lightest supersymmetric particle120.

When there are several particle species i, which are nearly degenerate
in mass, co-annihilations are important. In this case120, the rate equation
(41) still applies, provided n is interpreted as the total number density,

n ≡
∑

i

ni , (54)

n0 as the total equilibrium number density,

n0 ≡
∑

i

n0,i , (55)

and the effective annihilation cross section as

〈σeffvrel〉 ≡
∑

ij

n0,in0,j

n2
0

〈σijvrel〉 . (56)

In eq. (42), mχ is now understood to be the mass of the lightest sparticle
under consideration.

Note that this implies that the ratio of relic densities computed with
and without coannihilations is, roughly,

R ≡
Ω0

Ω
≈

(
σ̂eff

σ̂0

)(
xf

x0
f

)

, (57)

where σ̂ ≡ a + bx/2 and sub- and superscripts 0 denote quantities com-
puted ignoring coannihilations. The ratio x0

f/xf ≈ 1 + x0
f ln(geffσeff/g1σ0),

where geff ≡
∑

i gi(mi/m1)3/2e−(mi−m1)/T . For the case of three degener-
ate slepton NLSPs 121, geff =

∑
i gi = 8 and x0

f/xf ≈ 1.2. The effects of
co-annihilations are discussed below.

3.4. Phenomenological and Cosmological Constraints

For the cosmological limits on the relic density I will assume

0.1 ≤ Ωχh2 ≤ 0.3. (58)

The upper limit being a conservative bound based only on the lower limit
to the age of the Universe of 12 Gyr. Indeed, most analyses indicate that
Ωmatter <∼ 0.4 − 0.5 and thus it is very likely that Ωχh2 < 0.2 (cf. the
CMB results in Table 1). One should note that smaller values of Ωχh2 are
allowed, since it is quite possible that some of the cold dark matter might
not consist of LSPs.
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Figure 15. As in Fig. 14 for tanβ = 50.

The NUHM parameter space was recently analyzed140 and a sample of
the results found is shown in Fig. 16. While much of the cosmologically
preferred area with µ < 0 is excluded, there is a significant enhancement in
the allowed parameter space for µ > 0.

3.5. Detection

Because the LSP as dark matter is present locally, there are many avenues
for pursuing dark matter detection. Direct detection techniques rely on
an ample neutralino-nucleon scattering cross-section. The effective four-
fermion lagrangian can be written as

L = χ̄γµγ5χq̄iγµ(α1i + α2iγ
5)qi

+ α3iχ̄χq̄iqi + α4iχ̄γ5χq̄iγ
5qi
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MCMC Analysis

Long list of observables to
constrain CMSSM parameter space

4

Observable Th. Source Ex. Source Constraint Add. Th. Unc.

∆α(5)
had(mZ) [52] [53] 0.02758± 0.00035 –

mZ [GeV/c2] [52] [53] 91.1875± 0.0021 –

ΓZ [GeV/c2] [52] [53] 2.4952± 0.0023 0.001

σ0
had [nb] [52] [53] 41.540± 0.037 –

Rl [52] [53] 20.767± 0.025 –

Afb(#) [52] [53] 0.01714± 0.00095 –

A!(Pτ ) [52] [53] 0.1465 ± 0.0032 –

Rb [52] [53] 0.21629 ± 0.00066 –

Rc [52] [53] 0.1721 ± 0.003 –

Afb(b) [52] [53] 0.0992 ± 0.0016 –

Afb(c) [52] [53] 0.0707 ± 0.0035 –

Ab [52] [53] 0.923 ± 0.020 –

Ac [52] [53] 0.670 ± 0.027 –

A!(SLD) [52] [53] 0.1513 ± 0.0021 –

sin2 θ!
w(Qfb) [52] [53] 0.2324 ± 0.0012 –

mW [GeV/c2] [52] [53] 80.398± 0.025 0.010

mt [GeV/c2] [52] [53] 170.9± 1.8 –

BRSUSY
b→sγ /BRSM

b→sγ [54] [55] 1.13 ± 0.12 0.15

BRBs→µ+µ− [56] [55] < 8.0 × 10−8 0.02 × 10−8

aSUSY
µ − aSM

µ [50] [49,57,58] (29.5 ± 8.7) × 10−10 2.0 × 10−10

Ωh2 [56,59,60] [48] 0.113 ± 0.009 0.012

mh [GeV/c2] [26,34,36,61] [38] see text see text
Table 1
List of experimental constraints used in this work. The values and errors shown are the current best
understanding of these constraints. The rightmost column displays additional theoretical uncertainties
taken into account when implementing these constraints in the CMSSM. The constraint on mh is only
used in the first part of this study.

scan over M1/2 and A0 was then performed, and
provided information about preferred regions in
the CMSSM parameter space. In the study pre-
sented here instead, all free parameters are placed
in the overall χ2 minimum by the fit, thus remov-
ing the need to fix any model parameters during
the scans. Indeed, in the present work, only ex-
perimental constraints are imposed when deriving
confidence level contours, without any direct con-
straints on model parameters themselves. Hence,
the results presented here have a clearer statisti-
cal meaning and are more general with respect to

previous studies.
Second, in Ref. [14] a likelihood analysis of the

CMSSM parameter space was performed, but mh

was not emphasized. Third, in Refs. [19,20,21,
22,23,24], Markov Chain Monte Carlo techniques
were employed to sample the entire CMSSM pa-
rameter space with respect to the likelihoods and
the Bayesian posterior probabilities. The result-
ing probabilty distributions are usually graphi-
cally displayed in two-dimensional planes by in-
tegrating over the unseen dimensions. Given
the limited experimental precision of the data,

4

Observable Th. Source Ex. Source Constraint Add. Th. Unc.

mW [GeV/c2] [44,45] [46] 80.399± 0.025 0.010

aexp
µ − aSM

µ [8,47–49] [7,10,50] (29.5 ± 8.7) × 10−10 2.0 × 10−10

mh [GeV/c2] [51–54] [5,6] > 114.4 (see text) 3.0

BRexp
b→sγ/BRSM

b→sγ [55–59] [60] 1.117 ± 0.076exp ± 0.082th−SM 0.050

mt [GeV/c2] [44,45] [61] 172.4 ± 1.2 –

ΩCDMh2 [62–64] [14] 0.1099± 0.0062 0.012

BR(Bs → µ+µ−) [62,65,66] [60] < 4.7 × 10−8 0.02 × 10−8

BRexp
B→τν/BRSM

B→τν [67] [68,69] 1.94 ± 0.53 –

BRexp
Bd→$$/BRSM

Bd→$$ [65,66] [60] ? < 2.3 × 10−8 0.02 × 10−8

BRexp
B→Xs$$/BRSM

B→Xs$$ [65,66,70] [60] 0.99 ± 0.32 –

BRexp
K→µν/BRSM

K→µν [65,66] [71] 0.992± 0.017 –

BRexp
K→πνν̄/BRSM

K→πνν̄ [65,66] [] ? < 4.5 –

∆mexp
s /∆mSM

s [65,66] [72] 1.11 ± 0.01 0.32
(∆mexp

s
/∆mSM

s
)

(∆mexp
d

/∆mSM
d

)
[65,66] [72,60] 1.057± 0.013 0.085

∆mexp
K /∆mSM

K [65,66] [72] 0.92 ± 0.003 0.14

Table 1. List of experimental constraints used in this work in addition to the electroweak observables listed
in [43]. The top part of the table shows observables that are very sensitive to the CMSSM parameter space,
the middle part lists observables with updated measurements compared to [43] while the bottom part lists
additional experimental constraints. The values and errors shown are the current best understanding of
these constraints. The rightmost column displays additional theoretical uncertainties taken into account
when implementing these constraints in the CMSSM.

electroweak scale we have included the follow-
ing codes: FeynHiggs [51–54] for the evalua-
tion of mh and aSUSY

µ ; a code based on [65,66]
for the flavor observables, a code based on [44,
45] for the electroweak precision observables,
MicrOMEGAs [62–64] and DarkSUSY [77,78] for the
observables related to dark matter. We made ex-
tensive use of the SUSY Les Houches Accord [79]
in the combination of the various codes within the
MasterCode.

The deviation of (g − 2)µ from the SM predic-
tion by more than 3 σ can easily be accomodated
wuthin the (C)MSSM, if sign(µ) = sign(aSUSY

µ ).
Consequently, we analyze and discuss only the
case µ > 0.

The CMSSM parameter space has been sam-

pled using the MCMC technique. We treat m1/2,
m0, A0 and tanβ as free parameters, and the
Higgs mixing parameter µ and the pseudoscalar
Higgs mass mA as dependent parameters deter-
mined by the electroweak vacuum conditions.

A global χ2 function is defined, which combines
all calculations with experimental constraints:

χ2 =
N∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2
+

M∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables stud-
ied, Ci represents an experimentally measured
value (constraint) and each Pi defines a CMSSM
parameter-dependent prediction for the corre-

See also: Balz and Gondolo; 
Allanach, Lester, and Weber;
deAustri, Trotta, and Roszkowski
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boson mass in the SM obtained at LEP [5] is
mh > 114.4 GeV at the 95% C.L. The corre-
sponding bound within the MSSM could in prin-
ciple be substantially lower, due to a reduced ZZh
coupling or due to different, more complicated
decay modes of the Higgs bosons [6]. However,
it has been shown [94,95] that these mechanisms
cannot be realised within the CMSSM, and hence
the experimental lower bound of 114.4 GeV can
be applied 2. For our fit we use the full likelihood
information of the exclusion bound, given by the
CLs(mh) value, which is convoluted with a theory
error on the evaluation of mh of 3 GeV [57], ac-
cording to the detailed prescription found in [29].

The numerical evaluation has been performed
with the MasterCode that consistently combines
the codes responsible for RGE running, for which
we use SoftSUSY [96], and the various low-energy
observables. At the electroweak scale we have
included the following codes: FeynHiggs [57–
60] for the evaluation of the Higgs masses and
aSUSY

µ ; a code based on [73,74] and SuperIso [93]
for the flavour observables; a code based on [50,
51] for the electroweak precision observables;
MicrOMEGAs [68–70] and DarkSUSY [97,98] for the
observables related to dark matter. We made ex-
tensive use of the SUSY Les Houches Accord [99]
in the combination of the various codes within the
MasterCode.

The CMSSM parameter space has been sam-
pled using the MCMC technique. We treat m1/2,
m0, A0 and tanβ as free parameters, and the
Higgs mixing parameter µ and the pseudoscalar
Higgs mass mA as dependent parameters deter-
mined by the electroweak vacuum conditions.

A global χ2 function is defined, which combines
all calculations with experimental constraints:

χ2 =
N∑

i

(Ci − Pi)2

σ(Ci)2 + σ(Pi)2
+

∑

i

(fobs
SMi

− ffit
SMi

)2

σ(fSMi
)2

(1)

Here N is the number of observables stud-
ied, Ci represents an experimentally measured
value (constraint) and each Pi defines a CMSSM

2Following Ref. [32], for simplicity we use this bound also
in our NUHM1 analysis. As discussed below, the best-fit
NUHM1 point we find yields mh well above this bound.

parameter-dependent prediction for the corre-
sponding constraint. The three SM parameters
fSM = {∆αhad, mt, mZ} are included as fit pa-
rameters and constrained to be within their cur-
rent experimental resolution σ(fSM).

As indicated in Section 1, the sensitivity of the
global fit to different constraint scenarios is stud-
ied below by removing the ΩCDM constraint or
rescaling the (g−2)µ and other experimental un-
certainties. Since each new scenario represents a
new χ2 function which must be minimized, multi-
ple re-samplings of the full multi-dimensional pa-
rameter space are, in principle, required to deter-
mine the most probable fit regions for each sce-
nario and would be computationally too expen-
sive.

To avoid this difficulty, we analyze the effect of
removing the ΩCDM constraint by exploiting the
fact that independent χ2 functions are additive
and result in a well-defined χ2 probability. Hence,
a “loose” χ2 function, χ2

loose, is defined in which
the term representing the ΩCDM constraint is re-
moved from the original χ2. The χ2

loose function
represents the likelihood that a particular set of
model parameter values is compatible with a sub-
set of the experimental data constraints, without
any experimental knowledge of ΩCDM.

An exhaustive, and computationally expensive,
25 million point pre-sampling of the χ2

loose func-
tion in the full multi-dimensional model param-
eter space is then performed using an MCMC.
The result of this pre-sampling identifies fit re-
gions which are generally excluded by the consid-
ered sub-set of experimental data. Any regions
excluded by the less constrained fit will also be
excluded with the inclusion of additional exper-
imental constraints and, in particular, with dif-
ferent scenarios for the ΩCDM constraint. Hence,
without loss of generality, this pre-sampling pro-
cedure reduces the hyper-volume of parameter
space which needs to be searched multiple times
over in the context of different constraint scenar-
ios to a computationally manageable level.

Constraint terms representing the different
ΩCDM scenarios are then re-instated to form dif-
ferent χ2 = χ2

loose + χ2
scenario functions, one for

each scenario studied. The precise values of the
most probable fit parameters are determined via a
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Where is the FP?
Δχ2 vs m0
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The CMSSM with and with 
g-2

Buchmueller et al.

Without g-2With g-2





0 100 200 300 400 500 600 700 800 900
m1/2 (GeV)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

σ
χ
N

(p
bn

)

tan β = 10

WMAP coannihilation strip

1000 2000
m1/2 (GeV)

tan β = 50

χ-p, SI
χ-n, SI
χ-p, SD
χ-n, SD

Ellis, Olive, Savage

Direct Detection in the 
CMSSM



Spin and Scalar cross 
sections at tan β = 10

0 100 200 300 400 500 600 700 800

spin (pass all)

spin (fail Higgs)

scalar (fail Higgs)

scalar (pass all)

        10 -12

        10 -11

        10 -10

        10 -9

        10 -8

        10 -7

        10 -6

        10 -5

        10 -4

        10 -3

        10 -2

mχ (GeV)

σ
p (

pb
)

Ellis, Olive, Sandick



Direct Detection in the 
CMSSM

0 100 200 300 400 500 600 700 800
        10 -12

        10 -11

        10 -10

        10 -9

        10 -8

        10 -7

        10 -6

        10 -5

        10 -4

        10 -3

        10 -2

mχ (GeV)

scalar (fail Higgs)

scalar (pass all)

σ
SI

 (p
b)

Ellis, Olive, Sandick



Δχ2 vs elastic scattering

Buchmueller et al.

Without g-2With g-2



The scalar cross section

where

and

determined by

Uncertainties from hadronic matrix elements

where

Xi ≡ η∗

11

gmqi
Z∗

χ5−i

2mW Bi
− η∗

12eig
′Z∗

χ1,

Yi ≡ η∗

11

(
yi

2
g′Zχ1 + gT3iZχ2

)

+ η∗

12

gmqi
Zχ5−i

2mW Bi
,

Wi ≡ η∗

21

gmqi
Z∗

χ5−i

2mW Bi
− η∗

22eig
′Z∗

χ1,

Vi ≡ η∗

22

gmqi
Zχ5−i

2mW Bi
+ η∗

21

(
yi

2
g′Zχ1 + gT3iZχ2

)

, (4)

with yi, T3i denoting hypercharge and isospin, and

δ1i = Zχ3(Zχ4), δ2i = Zχ4, (−Zχ3) (5)

Bi = sin β(cos β), Ci = sin α(cos α), Di = cos α(− sin α), (6)

for up (down) type quarks. We denote by mH2
< mH1

the two scalar Higgs masses, and α

denotes the Higgs mixing angle. Finally, we note that the factors ηij arise from the diagonal-

ization of the squark mass matrices: diag(m2
1, m

2
2) ≡ ηM2η−1, which can be parameterized

for each flavour f by an angle θf and phase γf :
(

cos θf sin θfeiγf

− sin θfe−iγf cos θf

)

≡

(

η11 η12

η21 η22

)

. (7)

In the models we study below, the squark flavours are diagonalized in the same basis as the

quarks.

2.2 Hadronic Matrix Elements

The scalar part of the cross section can be written as

σ3 =
4m2

r

π
[Zfp + (A − Z)fn]2 , (8)

where mr is the reduced LSP mass,

fp

mp
=

∑

q=u,d,s

f (p)
Tq

α3q

mq
+

2

27
f (p)

TG

∑

c,b,t

α3q

mq
, (9)

the parameters f (p)
Tq are defined by

mpf
(p)
Tq ≡ 〈p|mq q̄q|p〉 ≡ mqBq, (10)

f (p)
TG = 1 −

∑

q=u,d,s f (p)
Tq [?], and fn has a similar expression.
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We take the ratios of the quark masses from [?]:

mu

md
= 0.553 ± 0.043,

ms

md
= 18.9 ± 0.8, (11)

and following [?], we have:

z ≡
Bu − Bs

Bd − Bs
= 1.49. (12)

Defining

y ≡
2Bs

Bd + Bu
, (13)

we then have
Bd

Bu
=

2 + (z − 1)y

2z − (z − 1)y
. (14)

The coefficients fTq are then easily obtained;

fTu =
muBu

mp
=

2Σ

mp(1 + md

mu
)(1 + Bd

Bu
)
, (15)

fTd
=

mdBd

mp
=

2Σ

mp(1 + mu

md
)(1 + Bu

Bd
)
, (16)

fTs =
msBs

mp
=

2(ms

md
)Σ y

mp(1 + mu

md
)
. (17)

The final task is to determine the quantity y characterizing the density of s̄s in the nucleon.

This may be determined from the π-nucleon Σ term, which is given by

σπN ≡ Σ =
1

2
(mu + md)(Bu + Bd). (18)

We are motivated to reconsider the value of y in light of recent re-evaluations of the π-nucleon

sigma term Σ, which is related to the strange scalar density in the nucleon by

y = 1 − σ0/Σ, (19)

where σ0 is the change in the nucleon mass due to the non-zero u, d quark masses, which

is estimated on the basis of octet baryon mass differences to be σ0 = 36 ± 7 MeV [?]. In

our previous work [?,?], we assumed a relatively conservative value Σ = 45 MeV, which was

already somewhat larger than naive quark model estimates, and corresponded to y # 0.2.

However, recent determinations of the π-nucleon Σ term have found the following values at

the Cheng-Dashen point t = +2m2
π [?]:

ΣCD = (88 ± 15, 71 ± 9, 79 ± 7, 85 ± 5) MeV. (20)
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The strangeness contribution to the proton mass

For Σ = 45 MeV, y = 0.2 

y =
2Bs

Bu + Bd

=
(mu + md)〈p|ss̄|p〉

Σ

= 1 −
σ0

Σ
σ0 = 36 ± 7 MeV

fTu = 0.020 fTd = 0.026 fTs = 0.117

For Σ = 64 MeV, y = 0.44 

fTu = 0.027 fTd = 0.039 fTs = 0.363

For Σ = 36 MeV, y = 0 

fTu = 0.016 fTd = 0.020 fTs = 0.



• Direct Detection signals are proportional to ρ0 
σχN

• The local density is ρ0 typically assumed to be 0.3 
GeV/cm-3, but 0.2 - 0.4 GeV/cm-3 is reasonable.

• Models of galaxy formation may allow values as 
low as 0.04 GeV/cm-3.

In addition, 
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Summary

•Dark Matter component is large (Ωh2 = 0.11)

•CMSSM - 4+ parameter theory testable at LHC

•mSUGRA - 3+ parameter subset of the CMSSM

- often predicts GDM

•CMSSM has several ‘regions’ in which the correct relic 
      density is obtained

•χ2 analysis (frequentist) shows strong preference for low 
(testable) values of m1/2, m0, and tan β


