HIGH ENERGY COSMIC AND GAMMA RAYS

Masahiro Teshima Max-Planck-Institute for Physics

Cosmic Ray Energy Spectrum

- Cosmic Rays
 10⁸eV ~10²⁰eV
- Power law spectrum
 - ∝ E^{-2.7} E<10^{15.5}eV
 - ∝ E-^{3.1} E>10^{15.5}eV
 - ∝ E^{-2.7} E>10^{18.5}eV
- Major components
 - P, He, ,,,, Fe
 - Anti-p, e⁻, e⁺

X E³ Spectrum

Cosmic Ray accelerators

Magnetic Field Strength

ULTRA HIGH ENERGY COSMIC RAYS

Cosmic Ray Energy Spectrum

- There is a special interest at the highest energy
 - Extreme energy of 10²⁰eV
 - Extragalactic origin
 - Where are they produced?
 - Big accelerator?
 - How are they accelerated?
 - Energy loss due to pion production with CMB
 - GZK effect > 6x10¹⁹eV
 - L <100Mpc
 - Energy loss due to pair creation with CMB
 - Pair creation >10¹⁸eV
 - L <1.5Gpc
 - High rigidity → Astronomy with UHECRs
- Flux is extremely low
 - ~ 1 / 1000km² sr yr, >10²⁰eV

Some stupid calculation Universe is 10²⁰eV Collider

- Flux is extremely low, but
- ~ 1 particle/min on the entire Earth
 - No phase transition of the vacuum at 100TeV @cms in the Earth
- 10²⁰eV CRs are universal in the Universe, p-p collision is possible at an extreme energy (10²⁰eVx10²⁰eV)
 - P(10²⁰eV) ρ ~ 10⁻²⁵m⁻³
 - Interaction rate of P(10²⁰eV) x P(10²⁰eV)
 - $c \propto \rho^2 \propto \sigma \sim 10^{-72} \, m^{-3} \, s^{-1}$
 - Volume of universe L~ 10^{26} m, V ~ 10^{78} m³
 - Event Rates ~ 10⁶ per Universe s⁻¹ ~MHz
 - Total ~10²⁴ collisions per Universe (in 13Byr)
- Universe seems to be stable
 - Even if you build the 10²⁰eV collider in future, you have no chance to test the phase transition of the vacuum
- Do calculation by yourself!!

Cosmic Ray accelerator Active Galactic Nuclei

Gamma ray bursts

Binary neutron stars

Matter (90Mpc) and Galaxies (45Mpc)

Marries and

By A.Kravtsov

Expected UHECR Skymaps (A.Onlinto and E. Armengaud)

Auger Anisotropy 27 events (E > 57EeV), 442 AGNs (z <0.017)

~10,000 L (km2 sr yr)

~1ML → 3000 events

Equatorial coordinate

6 pairs /27 events (6 degrees) → #S > 61

Morphological studies of potential sources Cen A (3.4Mpc) & Cen B (56Mpc) Moskalenko et al. 0805.1260v1

nature.com

In the Field

The Nature reporters' blog from conferences and events

MAY 03, 2009

APS 2009: Pierre Auger backs off claims for cosmic ray source

The mysterious origin of ultra-high energy cosmic rays is, it seems, still a mystery. Two years ago, scientists at the <u>Pierre Auger Observatory</u> in Argentina thought they had it solved. They <u>published a paper in Science</u>, based on two dozen particles, that there was a correlation with the location of Active Galactic Nuclei -- supermassive black holes that accelerate jets of material at near-light speed throughout the universe. At the time of the announcment, there was some doubt: The Hi-Res project, which scans the northern sky like Auger does the south, <u>found no such correlation</u>. And now, today, Stefan Westerhoff, an Auger scientist from the University of Wisconsin at Madison, said that, based on new particle detections -- they have more than 50 now -- the correlation no longer holds. "The signal strength is certainly considerably weaker now," he told his audience. "This is certainly a disappointment."

But the correlation isn't so weak that they can give up. The 70% correlation between the cosmic rays and the AGN at the time of the Science publication

has now dropped to about 40% -- considerably less, but not enough to support the null hypothesis. What could cause some particles to come from AGN, but not others? Westerhoff says it might have something to do with their composition. Maybe the protons come from the AGN, whereas higher mass cosmic rays, say iron nuclei, do not.

Westerhoff says this will be sorted out as they track more particles -- which can only come with more time and bigger detectors. If Pierre Auger is the size of Rhode Island, the proposed Pierre Auger North, not too far from Denver, would be the size of Massachusetts -and Westerhoff showed a slide how they can get the necessary statistics in a decade or two. No offense to the lovely state of Colorado, but I say keep the cow pasture free of Cerenkov detectors, and give folks like JEM-EUSO a chance to stick their <u>2.5-meter camera on the</u> <u>space station</u>.

Image: Pierre Auger

The Pierre Auger Observatory – 2 Sites Need for 2 sites realized since beginning of project

Southern Site: Mendoza

Hybrid detection & energy calibration
Water Cherenkov surface array
1600 stations, 3000 km²
1.5 km triangular grid
Completion end 2007
Science flowing - 38 papers here

Northern Site: Colorado

Retain features & functionality of Southern Site
 Hybrid detection & energy calibration
 Water Cherenkov surface array
 4000 stations, 10,370 km²
 Square mile grid

Altitude and latitude are similar

> Southern and Northern sites are shown at the same scale

Surface Array

- Tank with internal rotationally molded polyethylene foam insulation
 - Northern site is colder
- Central hatch for single large PMT
 - Cost reduction refinement
- 2nd hatch for assembly access

Dots indicate positions of 4032 tanks

30th ICRC Merida, Mexico July, 2007

5 Π Ξ • 1

Matter (<90Mpc), Galaxies (<45Mpc) by A.Kravtsov

X30 Auger South UHECRs 2x10⁶km²sr year UHE v 20 Tera-Ton year

Exposures for UHECRs

x100-200 times larger exposure is necessary

Summary: Ultra High Energy Cosmic Ray

- GZK like energy spectrum
 - CR flux suppression above 6x10¹⁹eV 6 sigma effect
 - GZK effect or the acceleration limit?
- Anisotropy above 6x10¹⁹eV
 - Correlation with the local matter density distribution
 - Super galactic plane
 - Hard X-ray selected AGNs
 - HI Galaxies → GRBs, Mangetors in normal galaxies?
 - Auger AGNs individual source power is not enough → Giant flare of AGNs (Farrer et al.)
- Still we do not understand the origin of UHECRs !!
 - We may need 30-100 times more exposure to establish UHECRastronomy (~1M Linsley) → 1000~3000events above GZK
 - Comprehensive measurements: Cosmogenic neutrinos, GZK gamma rays, recovery of the spectrum from GZK
 - Plans: Auger North and JEM-EUSO are under discussion

HIGH ENERGY GAMMA RAYS

VHE Instruments

MILAGRO

MAGIC

TIBET

Atmospheric Imaging Cherenkov Telescope

Observe Cherenkov light from gamma ray showers

Effective area ~ $10^5 m^2$

Imaging Technique Gamma / Hadron (CR) separation

Gamma and Hadron showers

Gamma Shower

Hadron shower

Development of a 2TeV Gamma Ray Shower from first interaction to the Milagro Detector

> Viewed from below the shower front -Color coded by Energy

This movie views a CORSIKA simulation of a gamma ray initiated shower. The purple grid is 20m per square and is moving at the speed of light in vacuum. The height of the shower above sea level is displayed at the bottom of the screen.

> Color coded by Kinetic Energy. The log base 2 of the kinetic energy is converted linearly to a color with red corresponding to 2TeV and blue 10MeV.

Development of a 2TeV Proton Shower from first interaction to the Milagro Detector

> Viewed from below the shower front -Color coded by Energy

This movie views a CORSIKA simulation of a proton initiated shower. The purple grid is 20m per square and is moving at the speed of light in vacuum. The height of the shower above sea level is displayed at the bottom of the screen.

> Color coded by Kinetic Energy. The log base 2 of the kinetic energy is converted linearly to a color with red corresponding to 2TeV and blue 10MeV.

Alpha (Orientation angle) distribution

Hadron rejection by orientation $\alpha \sim 90\%$

MAGIC Telescopes

New technologies to lower the threshold energy

17m diameter world largest Cherenkov tel.0.1°High resolution cameraHemispherical High QE PMTOptical fibre analogue signal transmission2GS/sec Ultra Fast FADCs

Current MAGIC-I Performance

Fast rotation for GRB < 40secs Trigger threshold ~55GeV → ~25GeV Sensitivity ~1.6% of Crab (50hrs) Angular resolution ~0.1 degrees Energy Resolution 20-30%

MAGIC-II is completed First Light Ceremony April 2009

Improve sensitivity by a factor of three Effectively lower the threshold energy (upgrade with HPD 55%QE photodetectors)

MAGIC-II Monte Carlo Studies

• Stereo reconstruction

- 3-D geometry
 - Core location
 - Arrival direction
- Shower characterization
 - Better Muon rejection
 - Shower max height
 - π^{0} shower rejection

• Aspects

- Better hadron rejection
- Better angular resolution
- Better energy resolution
- Enhance the sensitivity in the low energy around 100GeV

Water C-pool and AS array at high altitude Non-biased Sky Survey

Why do we study VHE gamma rays? by T. Weekes

- Why go to such high energies?
- Why do we study elephants when mosquitoes are easier and more plentiful?
- Elephants and VHE gammas are more interesting!!
- To find the origin of the cosmic radiation (The Holy grail of cosmic ray studies!)

Gamma-Ray Emission Processes(1) Astrophysical process

Synchrotron and IC emission Example: Crab Nebula

Synchrotron and IC emission Example: Mkn501 (AGN, Blazar)

Physics parameter dependence in Spectra (SSC model)

Gamma ray emission processes (2) Exotic processes (DM, Mini-BHs)

Dark Matter Annihilations

Scientific Objectives

GRBs

SNRs Pulsars and PWNe

Micro quasars X-ray binaries

AGNs

Universe in different energies

Great success!! HESS Galactic Plane Scan

MILAGRO Galactic plane observation

MILAGRO Observation in Galactic Coordinate

HESS: Shell type SNRs(7) RX J1713, RX J0852, RCW86

Shell type SNRs IC443(MAGIC J0616)

RX J1713 X-ray vs. Gamma-Rays

SED and Strong B in the shell suggest Hadronic origin of VHE gammas

Pulsar Wind-Nebula by Aharonian and Vogovalov

Radiation from a **Pulsar-wind-nebula** complex

Pulsar Wind Nebulae observation by HESS

- Major galactic TeV source population
 - Associated with relatively young (<10⁵ year old) and energetic pulsars
- Generally believed that we see inverse Compton emission of 1-100 TeV electrons
- 1% of Spin-down energy goes to VHE gamma rays

Pulsar Wind Nebula HESS J1825-137 Energy Dependent Morphology

MAGIC Crab Nebula (PWN) Gamma Ray Signals from Crab ~ 0.4Hz

Sum Trigger (~25GeV) analogue sum pattern trigger after clipping signal

Detection of Crab Pulsar after 20 years long effort

Published in Science in 2008

The MAGIC measurement clarified the emission mechanism

Galactic Center B.H., SNR, DM?

Galactic Center

Un-IDs (Dark Sources)

Category	Source	Discovery	Observation
Un-ID	TeV J2032+4130	HEGRA	
Un-ID	HESS J1303-631	HESS	
Un-ID	HESS J1614-518	HESS	
Un-ID	HESS J1702-420	HESS	
Un-ID	HESS J1708-410	HESS	
Un-ID	3EG J1744-3011 ?	HESS J1745-303	

Name	Possible counterpart	$Type^{a}$	Γ^b_{TeV}	f_{TeV}^c	$N_{\rm H}^d$	Γ^{e}_{X}	$f_{\rm X}^f$	$f_{\rm TeV}/f_{\rm X}$	$\operatorname{Reference}^{g}$
HESS J0852-463	RX J0852-4622	SNR	2.1	6.9	4	2.6	~ 10	~ 0.7	1, 2, 3
HESS J1303-631		?	2.4	1.0	20	2.0	< 0.64	> 1.6	4, 5
HESS J1514-591	PSR B1509-58	PWN	2.3	1.6	8.6	2.0	3.2	0.5	6, 7
HESS J1632-478	AX J1631.9-4752	HMXB?	2.1	1.7	210	1.6	1.7	1.0	8, 9
HESS J1640-465	G338.3-0.0	SNR	2.4	0.71	96	3.0	0.30	2.4	8, 10
HESS J1713-397	RX J1713.7-3946	SNR	2.2	3.5	8	2.4	54	0.065	11, 12
HESS J1804-216	Suzaku J1804-2142	?	2.7	0.48	2	-0.3	0.025	19	8, 13
HESS J1804-216	Suzaku J1804-2140	?	2.7	0.48	110	1.7	0.043	11	8, 13
HESS J1813-178	AX J1813-178	?	2.1	0.89	110	1.8	0.70	1.3	8, 14
HESS J1837-069	AX J1838.0-0655	?	2.3	1.4	40	0.8	1.3	1.1	8, 15
TeV J2032+4130	_	?	1.9	0.20	?	?	< 0.20	>10	16
HESS J1616-508	—	?	2.4	1.7	4.1	2.0	< 0.031	>55	This work

Suzaku (Matsumoto et al. 1996)

Cosmic Ray accelerator Active Galactic Nuclei

Extragalactic sources AGNs

FSRQ 3C279 (z=0.536) Most distant 100GeV AGN

Absorption by EBL (Extragalactic Background Light)

Limit on EBL spectrum

Blazar's Sequence

Probe Quantum Gravity with long flying HE gamma rays

Short Wavelenth

If Gravity is a Quantum theory, at a very short distance it may show a very complex "foamy" structure due to quantum fluctuation.

Use gamma ray beam from AGNs/GRBs to study the space-time structure

Energy 1000GeV ~ $10^{-16}E_{Pl}$ Distance 100~1000Mpc (10^{16-17} sec)

$$E_{Pl} = \sqrt{\frac{\hbar c^5}{G}} \approx 1.22 \times 10^{19} GeV$$

Visible time delay ~ 1 - 10 sec

Linear deviation:

$$\xi_1 < 0; \ v = c(1 - \frac{E}{M_{QG1}}); \ n(E) = 1 + \frac{E}{M_{QG1}}$$

Quadratic deviation:

$$\xi_1 = 0; \ \xi_2 < 0; \ v = c(1 - \frac{E^2}{M_{QG2}^2}); \ n(E) = 1 + \frac{E^2}{M_{QG2}^2}$$

Probing Q.G. Mrk501 very fast flare MAGIC

PKS2155 huge rapid flare by HESS

Future facilities for HE Gamma Ray Astronomy

CTA Next generation VHE Gamma ray Observatory

MAGIC Phase II (MAGIC-I + MAGIC-II) in 2009

>1000 sources will be discovered

Kifune Plot (expectation from log S - log N)

AGIS Advanced Gamma Imaging System US-PROJECT

HAWC Design

Array of 900 water tanks 5 m diameter x 4 m deep

Possible New Classes of Sources

- Current Generation IACTs discovered many interesting sources and phenomena
- VHE gamma ray is very rich in Physics and Astrophysics
 New sources will come; Pulsars, GRBs, Clusters of Galaxies, etc.
- There are still many open questions which must be solved
 - The origin of cosmic rays, where is our PEVATRON?
 - Very short flare from AGNs
 - Particle acceleration in the AGN jet
 - Hadronic sources, leptonic source
- Near Future
 - MAGIC-II (second phase of MAGIC) and HESS-II will come soon
 - # of sources will grow up a few hundreds in a few years
 - the next generation ultimate observatories CTA, AGIS, HAWC, and Extended Tibet AS array

COSMIC RAY GENERAL

COSMIC RAYS IN OUR GALAXY

Cosmic Rays in our galaxy

- Cosmic rays
 - T_{esc} ~ 5x10⁶~10⁷ yr
 - $\omega_{CR} \sim 1 eV/cm^3$
- Galactic Magnetic field
 - B~3µG
 - B²/8π~0.3eV/cm³
- Gas density
 - ~1particle/cm³

Propagation of cosmic rays

The bulk of cosmic rays propagate diffusively in the Galaxy. The abundances of light elements is the best proof.

~ 5g/cm² → ~10⁷ yr

Propagation of cosmic rays

The bulk of cosmic rays propagate diffusively in the Galaxy. The abundances of light elements is the best proof.

~ 5g/cm² → ~10⁷ yr

Secondary / Primary Ratio as a function of energy

Radioactive Clock isotope with CRIS

Be-10 (1.6 million year halflife) Al-26 (0.87 Myr) Cl-36 (0.30 Myr) Mn-54 (0.8 Myr estimated)

Again we obtain life time of $\sim 10^7$ year

Galactic Cosmic Rays

- Column density estimated from primary secondary ratio
 - Life time is ~10⁷ yr at 10GeV
 - Consistent with cosmic ray clock result
 - T_{esc}(E) = 10⁷ (E/10GeV) ^{-0.6} yr
 - Observed spectrum: $n(E) = dF/dE \propto E^{-2.7}$
 - $n(E) = Q(E) \times T_{esc}(E)$
 - Source spectrum is estimated as Q(E) ∝ E^{-2.1}
 expected spectrum from Fermi acceleration

Some complications in the positron flux

e+ / (e+ + e-)

e+/e- ratio significant deviation from SM
→ Maybe nearby pulsars, SNRs

There is no significant deviation form SM

anti-p / p

Bump in the electron

Chang et al., Nature 456, 362-365 (2008)

 sr^{-1} ATIC-1 500 •ATIC-2 ²-1 200 $E_e^3 dN_e/dE_e$ (GeV² m⁻² 100 50 20 10 100 200 20 50 500 1000 2000 5000 E_{e} (GeV) Nature 20.Nov.2008

Electron 'bump' may confirm dark matter

A high-altitude balloon experiment above the Antarctic seems to have seen a possible signature of mysterious 'dark matter', similar to that spotted earlier this year by a European satellite

The Advanced Thin Ionization Calorimeter (ATIC), an experiment to search for charged particles from space, has spotted a surplus of high-energy electrons coming from somewhere in the cosmos (see Letter, page 362, and News & Views, page 329). Although the interpretation is far from certain, the electrons could be produced by dark matter - previously undetected particles that physicists believe make up 85% of all matter in the Universe.

ATIC's findings are similar to data from the PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite mission, a collaboration between Italy, Russia, Germany and Sweden that spotted an excess of high-energy positrons, or anti-electrons, at

roughly similar energies (see Nature 454, 808; 2008). "In several respects the two measurements complement each other," says John Wefel, head of the ATIC collaboration and a physicist at Louisiana State University in Baton Rouge.

Wefel's team looked at data from two multiday ATIC missions flown between 2000 and 2003 some 35 kilometres above the Antarctic

Several experiments may have found dark matter, the existence of which is inferred here (blue).

© 2008 Macmillan Publishers Limited. All rights reserved

ice. With 99.5% of Earth's atmosphere beneath them, the missions measured electrons that come from various galactic sources such as exploding stars. As predicted by theory, the experiment saw fewer electrons at higher energies. But between 300 gigaelectronvolts and 600 gigaelectronvolts, the number of electrons rose sharply before falling off to background levels.

PAMELA's results, as posted on the arXiv § preprint server last month (O. Adriani et al. http://arxiv.org/abs/0810.4995; 2008) and also submitted to Nature, show positrons increasing up to 100 gigaelectronvolts. Although the collaboration did not report beyond this energy level, some suspect that the number of positrons may continue to increase at higher energies. And, because the PAMELA and ATIC data were measured in different ways, researchers believe that their findings probably confirm each other.

Electrons and galactic diffuse gammas with Fermi

Exercise 1: Life time of cosmic rays

- Assume GCRs pass through the matter of 5g/cm² column density
- Assume the average matter density in our galaxy as $\rho_{H} \sim 0.5$ proton /cm³
- Q1. What is the typical life time of cosmic rays? Let's calculate by yourself.
 - N_A = 6.02*10²³
 - 5.0 g/cm² = 5.0^*N_A protons/cm²
 - $\rho_H \sim 0.5 \text{ protons/cm}^3$
 - L = $5.0^*N_A / \rho_H = 5 \cdot 6 \times 10^{23} / 0.5 = 6 \times 10^{24} \text{ cm} = 6 \times 10^{22} \text{ m}$
 - $T = L/c = 2x10^{14} sec \sim 7 x10^{6} yr$

Exercise 2: Cosmic ray Energy in our galaxy

- Cosmic rays in our galaxy
 - T_{esc} ~ 3x 10¹⁴s = 10⁷ yr
 - $\omega_{CR} \sim 1 eV/cm^3$
 - ≥90 % of energy density are from <100GeV C.R.
- Volume of CR reservoir, our Galaxy
 - V ~ π 15kpc² 300pc ~ 10⁶⁷cm³ (1pc = 3.1 x 10¹⁸cm)
- Q2: Stored Energy and necessary power for cosmic ray sources (1eV = 1.6 x 10⁻¹² erg = 1.6 x 10⁻¹⁹J)
 - Ecr ~ V ω_{CR} ~ 10⁶⁷eV = 10⁶⁷ eV 1.6 x 10⁻¹² erg/eV = 1.6 x 10⁵⁵ erg

•
$$W_{cr} \sim V \cdot \omega_{CR} / T_{esc} \sim 5x10^{40} erg/s$$

Exercise 3: Power from Super Nova

- Type II Super Novae
 - Ejector's velocity $u \sim 5x106 \text{ m/s}$ (v/c~1/60)
 - Ejection of ~10M☉ (M☉~2x1030 kg)
- Q1 What is the kinetic energy of SN (erg)
 - 1/2 x 10M⊙x u2 ~ 3 x 1051erg
- Q2 What is the energy supply rate (erg/sec)
 - assume SN rate ~ every 30years(~109sec)
 - ESNR/30yr ~ 3 x 1042erg/s → ~60 times of necessary power for cosmic rays

Exercise 4: Power from Pulsars

• $E_{rot} \sim 2/5 \text{ M R}^2 \Omega^2$

● M=1.4M☉, R=10km, Ω= (2π/0.033) s-1

- What is the rotation energy of pulsar
 E_{rot} ~ 4 x 10⁴⁹ erg
- What is the energy dissipation rate?
 - assume decay of rotation ~3000yr~10¹¹sec
 - dE_{rot}/dt = 4x10³⁸ erg/sec per pulsar
- What is the total energy supply from pulsar?
 - assume pulsar rate $v_{psr} = 1/30yr = 1/10^9sec$
 - $L_{psr} \sim v_{psr} \times E_{rot} \sim 4 \times 10^{40} \text{ erg/sec in our galaxy}$

Note 1: Eddington Luminosity

Maximum E.M. radiation from compact object

- $\sigma_T L_{Edd} / 4\pi R^2 c = GMm_p / R^2$
 - Radiation pressure for gas (electron) = Gravitational force for gas (Proton) ($\sigma_T = (8\pi/3) R_e^2 = 0.665 \times 10^{-28} m^2 = 0.665 \text{ barn}$) ($R_e = e^2/m_e c^2 = 2.81 \times 10^{-15} \text{m}$)
- $L_{Edd} = 1.3 \times 10^{38} (M/M_{\odot}) \text{ erg/s}$
- Max. Luminosity from Pulsar (~1.4 M_{\odot}) ~10³⁸ erg/s
- Max. Luminosity from AGNs($10^8 M_{\odot}$) ~ 10^{46} erg/s
- c.f. Luminosity from our Sun ~3.85 x10³³ erg/s

ACCELERATION OF COSMIC RAYS

Candidates for UHE C.R. accelerator

Magnetic Field Strength

Hillas Limit in particle acceleration

- Particle must be confined in the accelerator size
 - Larmor radius
 - $R_L = 1.08 E_{15} / ZB_{\mu G}$ (in pc)
 - Size of the accelerator must be two times larger than Larmor Radius

•
$$L_{pc} > 2R_L = 2.2 E_{15} / ZB_{\mu G}$$
 (in pc)

•
$$E_{max} < 0.5 \times L_{pc} ZB_{\mu G}$$

Hillas Limit

- Other interpretation
- Moving magnetic field will produce electric field (for example, pulsars)
 - Induced electric field $E = \beta x B$
 - In the size of L region, $\Phi_{max} = L \times \beta \times B$

•
$$E_{max} < Z \times \Phi_{max} = Z L_{pc} \beta B_{\mu G}$$

Excersize 5: Hillas limit to SNRs

- Q: What is the maximum energy in SNR acceleration
 - Shock velocity β = 0.01
 - Age T = 1000yr → L = 10 lyr = 3pc
 - Inter stellar Magnetic field B = 3µG
 - E_{15} = 0.5 x $L_{pc} \beta B_{\mu G}$ (in PeV)
 - E_{max} = 0.5 x 3 x 0.01 x 3 = 0.045 = 45 TeV
 - → this is not enough to explain the knee in the cosmic ray spectrum!!

Excersize 6: Hillas limit to Pulsars

- What is the maximum energy in Pulsar acceleration
 - Radius R = 10km = 10⁴m / 3x10¹⁶ m/pc ~ 3 x 10⁻¹³pc
 - Magnetic Field = 10^{12} G = 10^{18} µG
 - Rotation ω = 2π · 33 s⁻¹ → β= v/c = ωR/c = 200 · 10⁴m / 3x10⁸m = 7 x 10⁻³
 - Emax ~ R (ω R/C)B

•
$$E_{max} = 0.5 R_{pc} \beta B_{\mu G}$$

= 0.5 x 3x 10⁻¹³ x 7x10⁻³ x 10¹⁸
= 1000 PeV

= 10¹⁸eV

 In reality: The synchrotron radiation, curvature radiation must be taken into accout
SECOND ORDER FERMI ACCELERATION (ORIGINAL FERMI'S IDEA)

Fermi Accleration (2nd order) p1

- Head on collision
 - in cloud frame
 - E' = γ (E+VP)
 - P' = γ (P+VE/c²)
- After the reflection

Cosmic ray • E' after = E' before • P' after = - P' after Then transform to lab. Frame • E'' = $\gamma(E'+VP') = \gamma(\gamma(E+VP)+V\gamma(P+VE/c^2))$ $= \gamma^2 (E + VP + VP + V^2/c^2E)$ $= \gamma^2 ((1 - V^2/c^2)E + 2VP + 2V^2/c^2E)$ $= E + 2 \gamma^2 E V/c (V/c+ v/c)$

- $\Delta E = -2 \gamma^2 E V/c (-V/c+v/c)$ following

E, P, ν ~c

E", P"

V,γ~1

Cloud

Fermi Acceleration (2nd order) p2

Probability of head on and following collision

- Head on \rightarrow v+V \rightarrow (v+V)/2v
- Following $\rightarrow v-V \rightarrow (v-V)/2v$
- Total energy gain after taking average

Fermi Acceleration (2nd order) p3

- $\Delta E/E = 4(V/c)^2$
- Collision rate M
- $dE/dt = 4M(V/c)^2E = \alpha E$
 - $E \propto \exp(\alpha t)$
- After k collisions,
 - $E = \beta^{k} E_{0}$, here $\beta = (1+4(V/c)^{2})$
- Escape rate (1-P) in each collision (remaining probability = P)
 - $N = P^k N_0$
 - $\log(N/N0)$ / $\log(E/E0) = \log(P)/\log(\beta)$
- $N \propto E^{(\log(P)/\log(\beta))}$, $dN/dE \propto E^{(-1 + \log(P)/\log(\beta))}$

FIRST ORDER FERMI ACCELERATION

Fermi Acceleration (1st order) p1

- Balndford and Ostriker 1978 ApJ 174,p253-
- Shock wave
 - V=10⁴kms⁻¹

(Sound velocity 10kms⁻¹)

•
$$\rho_2 / \rho_1 = \gamma + 1 / \gamma - 1 \sim 4$$

• $\gamma = C_p/C_v$, fully ionized gas $\gamma = 5/3$

Exact ratio

• $\rho_2 / \rho_1 = (C_p / C_v + 1)M^2 / ((C_p / C_v - 1)M^2 + 2)$

Cas-A exploded 300yr ago

Fermi Acceleration (1st order) P2

- $\rho_2 / \rho_1 = \gamma + 1/\gamma 1 \sim 4$
- Gas is compressed by a factor of 4 and follow the shock with the relative velocity of 1/4V

•
$$u_2 = 3/4V$$
, $u_1 = 0$

Fermi Acceleration (1st order) P3

- $\rho_2 / \rho_1 = \gamma + 1/\gamma 1 \sim 4$
- From the continuity of gas flow
 - $u_1 \times \rho_1 = u_2 \times \rho_2$

Fermi Acceleration (1st order) P4

- $\rho_2 / \rho_1 \sim 4$
- $u_2 = 1/4 V$, $u_1 = V$
- ∆u= u₁-u₂ = 3/4 V
 converging flow
- cosmic ray particles crossing the shock
 - E' = γ(E+Δu/ c Pc)
 - E" = γ(E'+Δu/ c P'c)
 - E~Pc, γ~1
 - E" = E+2∆u /c E
- $\Delta E/E = 2 \Delta u/c$
- $\Delta E/E = 4/3 \Delta u/c$

Fermi Acceleration (1st order) p5

- after k-cycles
- $E=\beta^k E_0$
- here β= (1+4/3Δu /c), logβ~ 4/3 Δu /c
- cosmic rays in upstream must come back down stream
- But, cosmic rays in down stream will escape some probability from the system
- n1~ n2 ~n are cosmic ray densities in the upstream and downstream, respectively
- cosmic ray flux crossing the shock is 1/4 n c
- In downstream, cosmic ray flux of n x u2 escape from the system
- Then among the cosmic ray flux of 1/4 n c from upstream to downstream, the flux of n x u2 will escape in downstream and 1/4 n c – n u2 will again go back to upstream

Fermi Acceleration (1st order) p7

The probability to remain in the system

•
$$P = (1/4 n c - n u_2) / (1/4nc) = 1 - 4 u_2 / c$$

- $\log(P) \sim -4u_2/c$
- $\log (\beta) \sim -4/3 \Delta u = -4/3(u_1 u_2) = 4u_2$
- Then, $\log (P)/\log(\beta) = -4u_2 / 4u_2 = -1$
- Energy spectrum of cosmic rays by shock acceleration
 - N \propto E⁻¹, dN/dE= E⁻²
 - → Fermi Acceleration golden rule

Excersize 7: Expansion of SNR

- Let's calculate the lifetime of SNR (free expansion phase)
 - Assume 10M_o ejectors from SN,1proton/cm3 gas density in the enviroment and shock velocity of 1/60c
 - When the total ejector mass and accumulated gas becomes equal, the shock will start to dump (enter Sedov phase)
 - $(1M_{\odot}=2.0 \times 10^{30} \text{kg})$
- Q1: calculate the time to shift from the free expansion phase to Sedov phase by yourself
 - $10M_{\odot}$ ~ expanding volume x 1 proton cm⁻³
 - $10^{2}.0x10^{30}$ kg = $2x10^{34}$ x $6.02x10^{23}$ protons
 - $4\pi/3 \times Rc^3 = 12 \times 10^{57}$
 - $R_c \sim 3^{1/3} \times 10^{19} \text{ cm} \sim 1.4 \times 10^{19} \text{ cm} \sim 5 \text{ pc}$
 - T_c ~ 5pc/v ~15 lyr/(1/60c) ~ 1000 ly